1. Phytochemical coevolution theory, a long-standing paradigm in plant-insect interactions, predicts that specialist herbivores are less negatively affected by the allelochemicals of their host plants than are generalist herbivores. Although this theory is prevalent in plant-insect science, it is not always supported by empirical studies measuring the performance of specialist and generalist insects in response to allelochemicals.2. The present study aimed to investigate: (i) whether there a difference between specialist and generalist performance in response to allelochemicals and (ii) whether the effect of allelochemicals on specialists and generalists depend upon allelochemical class or insect order.3. A meta-analysis was conducted incorporating 76 effect sizes drawn from studies that directly compared the performance of specialist and generalist insects in response to treatment and control diets. Most of the effect sizes were related to the performance metric growth, the insect order Lepidoptera, and the allelochemical class nitrogen-containing compounds. 4. As predicted by phytochemical coevolution theory, specialist insects responded less negatively to allelochemicals of their hosts than generalist insects in terms of growth. There were no significant differences in terms of fecundity or survival, or among allelochemical classes or insect orders. 5. These results support the prediction of phytochemical coevolution theory that specialist insects respond less negatively to allelochemicals of their hosts than generalists, although only in terms of growth.
Climate change is expected to alter habitat more rapidly than the pace of evolution, leading to tree populations that are maladapted to new local conditions. Assisted migration is a mitigation strategy that proposes preemptively identifying and planting genotypes that are robust to the expected climate change-induced alterations of an area. Assisted migration however, may impact the broader community, including herbivores which often coevolved with local plant genotypes and their defenses. Although this question has been examined in arthropod herbivores, few studies have assessed this question in mammalian herbivores, and fewer still have leveraged experimental design to disentangle the genetic contribution to herbivore preference.We examined the hypothesis that North American porcupine (Erethizon dorsatum) browsing on Fremont cottonwood (Populus fremontii) is under genetic control in a common garden, which allowed us to uncouple genetic and environmental contributions to browse preference.Generally, porcupines selected local trees and trees from climatically similar areas, where trees from local and cooler climate populations suffered over 2x more extensive herbivory than trees from warmer areas. Plant genotype was a significant factor for selection, with the most heavily browsed genotype having on average >10x more herbivory than the least heavily browsed. Because genotypes within and among populations were replicated, we calculated broad-sense heritability in which tree palatability by porcupines was H2B = 0.28 (95% CI: 0.13-0.48) among genotypes.Synthesis and applications. Our results indicate a genetic component to tree defenses against porcupine herbivory that can be predicted by the climate of the source population. This result has important implications for mammalian herbivores if climate change renders local tree genotypes maladaptive to new conditions. We recommend assisted migration efforts consider this implication and plant stock from both warmer and climatically similar areas to maintain genetic diversity in a changing environment, productivity and forage for mammalian herbivores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.