Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by social and language deficits, stereotypic behavior, and abnormalities in motor functions. The particular set of behavioral impairments expressed in any given individual is variable across the spectrum. These behavioral abnormalities are consistent with our current understanding of the neuropathology of ASD which suggests abnormalities in the amygdala, temporal and frontal cortexes, hippocampus, and cerebellum. However, regions unrelated to these behavioral deficits appear largely intact. Both genetic predisposition and environmental toxins and toxicants have been implicated in the etiology of autism; the impact of these environmental triggers is associated with increases in oxidative stress, and is further exacerbated when combined with genetic susceptibility. We have previously reported increased levels of 3-nitrotyrosine (3-NT), a marker of oxidative stress, in ASD cerebella. We have also shown that this increase was associated with an elevation in neurotrophin-3 (NT-3) levels. The objectives of the current study were to determine whether the increase in oxidative stress in ASD is brain region-specific, to identify the specific brain regions affected by oxidative stress, and to compare brain region-specific NT-3 expression between ASD and control cases. The levels of 3-NT and NT-3 were measured with specific ELISAs in individual brain regions of two autistic and age- and postmortem interval (PMI)--matched control donors. In the control brain, the levels of 3-NT were uniformly low in all brain regions examined ranging from 1.6 to 12.0 pmol/g. On the other hand, there was a great variation in 3-NT levels between individual brain regions of the autistic brains ranging from 1.7 to 281.2 pmol/g. The particular brain regions with the increased 3-NT and the magnitude of the increase were both different in the two autistic cases. In the older autistic case, the brain regions with highest levels of 3-NT included the orbitofrontal cortex (214.5 pmol/g), Wernicke's area (171.7 pmol/g), cerebellar vermis (81.2 pmol/g), cerebellar hemisphere (37.2 pmol/g), and pons (13.6 pmol/g); these brain areas are associated with the speech processing, sensory and motor coordination, emotional and social behavior, and memory. Brain regions that showed 3-NT increase in both autistic cases included the cerebellar hemispheres and putamen. Consistent with our earlier report, we found an increase in NT-3 levels in the cerebellar hemisphere in both autistic cases. We also detected an increase in NT-3 level in the dorsolateral prefrontal cortex (BA46) in the older autistic case and in the Wernicke's area and cingulate gyrus in the younger case. These preliminary results reveal, for the first time, brain region-specific changes in oxidative stress marker 3-NT and neurotrophin-3 levels in ASD.
Autism is a neurodevelopmental disorder characterized by social and language deficits, ritualistic-repetitive behaviors and disturbance in motor functions. Data of imaging, head circumference studies, and Purkinje cell analysis suggest impaired brain growth and development. Both genetic predisposition and environmental triggers have been implicated in the etiology of autism, but the underlying cause remains unknown. Recently, we have reported an increase in 3-nitrotyrosine (3-NT), a marker of oxidative stress damage to proteins in autistic cerebella. In the present study, we further explored oxidative damage in the autistic cerebellum by measuring 8-hydroxydeoxyguanosine (8-OH-dG), a marker of DNA modification, in a subset of cases analyzed for 3-NT. We also explored the hypothesis that oxidative damage in autism is associated with altered expression of brain neurotrophins critical for normal brain growth and differentiation. The content of 8-OH-dG in cerebellar DNA isolated by the proteinase K method was measured using an enzyme-linked immunosorbent assay (ELISA); neurotrophin-3 (NT-3) levels in cerebellar homogenates were measured using NT-3 ELISA. Cerebellar 8-OH-dG showed trend towards higher levels with the increase of 63.4% observed in autism. Analysis of cerebellar NT-3 showed a significant (p = 0.034) increase (40.3%) in autism. Furthermore, there was a significant positive correlation between cerebellar NT-3 and 3-NT (r = 0.83; p = 0.0408). These data provide the first quantitative measure of brain NT-3 and show its increase in the autistic brain. Altered levels of brain NT-3 are likely to contribute to autistic pathology not only by affecting brain axonal targeting and synapse formation but also by further exacerbating oxidative stress and possibly contributing to Purkinje cell abnormalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.