Three 1-(2-nitrophenyl)ethyl-caged phospho-amino acids have been synthesized for use in standard N(alpha)-fluorenylmethoxycarbonyl-based solid-phase peptide synthesis (SPPS). The most common naturally occurring phospho-amino acids, serine, threonine, and tyrosine, were prepared as protected caged building blocks by modification with a unique phosphitylating reagent. In previous work, caged phospho-peptides were made using an interassembly approach (Rothman, D. M.; Vazquez, M. E.; Vogel, E. M.; Imperiali, B. Org. Lett. 2002, 4, 2865-2868). However, this technique is limited to creating peptides without oxidation sensitive residues C-terminal to the amino acid to be modified and the methodology involves synthetic manipulations on the solid phase that may limit the utilization of the methodology. Herein we report the facile synthesis of N-alpha-Fmoc-phospho(1-nitrophenylethyl-2-cyanoethyl)-L-serine 1, N-alpha-Fmoc-phospho(1-nitrophenylethyl-2-cyanoethyl)-L-threonine 2, and N-alpha-Fmoc-phospho(1-nitrophenylethyl-2-cyanoethyl)-L-tyrosine 3. These building blocks allow the synthesis of any caged phospho-peptide sequence using standard Fmoc-based SPPS procedures.
[reaction: see text] An interassembly approach for the synthesis of peptides containing 1-(2-nitrophenyl)ethyl-caged phosphoserine, -threonine, and -tyrosine has been developed. Photochemical uncaging of these peptides releases the 2-nitrophenylethyl protecting group to afford the corresponding phosphopeptide. The peptides described herein are based on phosphorylation sites of kinases involved in cell movement or cell cycle regulation and demonstrate the versatility of the method and compatibility with the synthesis of polypeptides, including a variety of encoded amino acids.
Caged phosphopeptides and phosphoproteins are valuable tools for dissecting the dynamic role of phosphorylation in complex signaling networks with temporal and spatial control. Demonstrating the broad scope of phosphoamino acid caging for studying signaling events, we report here the semisynthesis of a photolabile precursor to the cellular migration protein paxillin, which is a complex, multidomain phosphoprotein. This semisynthetic construct provides a powerful probe for investigating the influence that phosphorylation of paxillin at a single site has on cellular migration. The 61-kDa paxillin construct was assembled using native chemical ligation to install a caged phosphotyrosine residue at position 31 of the 557-residue protein, and the probe includes all other binding and localization determinants in the paxillin macromolecule, which are essential for creating a native environment to investigate phosphorylation. Following semisynthesis, paxillin variants were characterized through detailed biochemical analyses and by quantitative uncaging studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.