This preliminary investigation has shown limbic blood flow increase with IPT yet not venlafaxine, while both treatments demonstrated increased basal ganglia blood flow. This was, however, a short trial with a small sample, no control group, and different symptom reduction in the 2 groups.
The aqueous outflow system is unique because nowhere else can the pattern of flow of an extravascular fluid be directly observed as it returns to the vascular system. Such observations reveal that aqueous flow both from Schlemm’s canal into the aqueous veins and from the aqueous veins into the episcleral veins is pulsatile. Pulsatile aqueous flow mechanisms are observable in vivo not only in normal and but also in glaucomatous eyes. A series of specific patterns accompany the pulsatile mixing of aqueous with blood in the episcleral veins. These directly observable patterns of pulsatile flow are synchronous with intraocular pressure (IOP) transients induced by the cardiac pulse, blinking and eye movement. Patterns of pulsatile flow are altered by events that increase IOP such as pressure on the side of the eye, tonography and water drinking. Pulsatile flow stops when IOP is reduced below its resting level, but begins again when IOP returns to the resting level. Pulsatile flow reduction probably results from the intrinsic reduction of pulse amplitude at a lower IOP, and may thus provide a passive mechanism to maintain short-term homeostasis. Thus modulation of the pulsatile flow phenomenon appears to maintain a homeostatic IOP setpoint. Visible pulsatile flow abnormalities develop in glaucoma patients. Medications that reduce IOP through improvement in outflow do so through pulsatile flow mechanisms. Laboratory studies have demonstrated that cyclic stresses in outflow tissues alter signaling pathways, cytoskeletal responses, extracellular matrix composition and cytokine secretion. How physiologic pulse transients orchestrate cellular responses and how cellular responses identified in the laboratory may in turn regulate pulsatile aqueous outflow is unknown. Linkage of laboratory and in vivo observations await an improved understanding of how cellular and extracellular structures within the outflow system are able to generate an aqueous pulse wave. The purpose of the current report is to provide a summary of in vivo IOP-induced patterns of cyclic flow that can be used as part of a framework for interpretation of responses to cyclic stresses identified in the laboratory.
Advertisers address French consumers through English using a blend of text, illustrations, and music soundtracks to create a positive emotional response. Emerging from this analysis is a consumer for whom a 'glocal' identity is reinforced through advertising discourse. Using multimodal techniques, advertisers create a panoply of border-crossing experiences, encouraging their audiences to view these messages from their own cultural perspective. Also highlighted are various efforts on the part of the French government to limit the public's exposure to English (e.g., 1994 Toubon Law) as well as the industry's reaction to such intervention. Although some may argue that the omnipresence of English in French advertising is more of a "cultural and linguistic invasion" than a rich display of linguistic creativity and whimsical expression, evidence suggests that English in this context is often refashioned as a simple form of entertainment, and that the French linguistic and cultural identity remains very much intact.
The global financial crisis of 2007-09 has illustrated the importance of including funding liquidity feedbacks in any model of systemic risk. This paper illustrates how we have incorporated such channels into a risk assessment model for systemic institutions (RAMSI), and it outlines the Bank of England's plans to use RAMSI to sharpen its assessment of institution-specific and systemwide All authors are with the Bank of England except Prasanna Gai, who is with the Australian National University, and Nada Mora, who is with the Federal Reserve Bank of Kansas City. The RAMSI project represents a major investment of Bank of England resources, and we are grateful to many people both inside and outside the Bank of England for their contributions. In particular, the National Bank of Austria has been very generous in providing guidance and significant analytical contributions. The analysis in this paper has benefited from encouragement and contributions from Viral Acharya, Niki
Abstract. Glaucoma is a blinding disease for which intraocular pressure (IOP) is the only treatable risk factor. The mean IOP is regulated through the aqueous outflow system, which contains the trabecular meshwork (TM). Considerable evidence indicates that trabecular tissue movement regulates the aqueous outflow and becomes abnormal during glaucoma; however, such motion has thus far escaped detection. The purpose of this study is to describe anovel use of a phase-sensitive optical coherence tomography (PhS-OCT) method to assess pulsedependent TM movement. For this study, we used enucleated monkey eyes, each mounted in an anterior segment holder. A perfusion system was used to control the mean IOP as well as to provide IOP sinusoidal transients (amplitude 3 mmHg, frequency 1 pulse/second) in all experiments. Measurements were carried out at seven graded mean IOPs (5,8,10,20,30,40, and 50 mm Hg). We demonstrate that PhS-OCT is sensitive enough to image/ visualize TM movement synchronous with the pulse-induced IOP transients, providing quantitative measurements of dynamic parameters such as velocity, displacement, and strain rate that are important for assessing the biomechanical compliance of the TM. We find that the largest TM displacement is in the area closest to Schlemm's canal (SC) endothelium. While maintaining constant ocular pulse amplitude, an increase of mean IOP results in a decrease of TM displacement and mean size of the SC. These results demonstrate that the PhS-OCT is a useful imaging technique capable of assessing functional properties necessary to maintain IOP in a healthy range, offering a new diagnostic alternative for glaucoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.