Accumulating evidence suggests vascular dysregulation in preclinical Alzheimer’s disease. In this study, cerebral hemodynamics and their coupling with cognition in middle-aged apolipoprotein ε4 carriers (APOEε4+) were investigated. Longitudinal 3 T T1-weighted and arterial spin labelling MRI data from 158 participants (40–59 years old) in the PREVENT-Dementia study were analysed (125 two-year follow-up). Cognition was evaluated using the COGNITO battery. Cerebral blood flow (CBF) and cerebrovascular resistance index (CVRi) were quantified for the flow territories of the anterior, middle and posterior cerebral arteries. CBF was corrected for underlying atrophy and individual hematocrit. Hemodynamic measures were the dependent variables in linear regression models, with age, sex, years of education and APOEε4 carriership as predictors. Further analyses were conducted with cognitive outcomes as dependent variables, using the same model as before with additional APOEε4 × hemodynamics interactions. At baseline, APOEε4+ showed increased CBF and decreased CVRi compared to non-carriers in the anterior and middle cerebral arteries, suggestive of potential vasodilation. Hemodynamic changes were similar between groups. Interaction analysis revealed positive associations between CBF changes and performance changes in delayed recall (for APOEε4 non-carriers) and verbal fluency (for APOEε4 carriers) cognitive tests. These observations are consistent with neurovascular dysregulation in middle-aged APOEε4+.
BackgroundRegional cerebral hypoperfusion is characteristic of Alzheimer’s disease (AD). Previous studies report conflicting findings in cognitively normal individuals at high risk of AD. Understanding early preclinical perfusion alterations may improve understanding of AD pathogenesis and lead to new biomarkers and treatment targets.Methods3T arterial spin labelling MRI scans from 162 participants in the PREVENT-Dementia cohort were analysed (cognitively normal participants aged 40–59, stratified by future dementia risk). Cerebral perfusion was compared vertex-wise according to APOE ε4 status and family history (FH). Correlations between individual perfusion, age and cognitive scores (COGNITO battery) were explored.ResultsRegional hyperperfusion was found in APOE ε4+group (left cingulate and lateral frontal and parietal regions p<0.01, threshold-free cluster enhancement, TFCE) and in FH +group (left temporal and parietal regions p<0.01, TFCE). Perfusion did not correlate with cognitive test scores.ConclusionsRegional cerebral hyperperfusion in individuals at increased risk of AD in mid-life may be a very early marker of functional brain change related to AD. Increased perfusion may reflect a functional ‘compensation’ mechanism, offsetting the effects of early neural damage or may itself be risk factor for accelerating spread of degenerative pathology.
BackgroundMarkers of cerebrovascular disease are common in dementia, and may be present before dementia onset. However, their clinical relevance in midlife adults at risk of future dementia remains unclear. We investigated whether the Cardiovascular Risk Factors, Ageing and Dementia (CAIDE) risk score was associated with markers of cerebral small vessel disease (SVD), and if it predicted future progression of SVD. We also determined its relationship to systemic inflammation, which has been additionally implicated in dementia and SVD.MethodsCognitively healthy midlife participants were assessed at baseline (n=185) and 2-year follow-up (n=158). To assess SVD, we quantified white matter hyperintensities (WMH), enlarged perivascular spaces (EPVS), microbleeds and lacunes. We derived composite scores of SVD burden, and subtypes of hypertensive arteriopathy and cerebral amyloid angiopathy. Inflammation was quantified using serum C-reactive protein (CRP) and fibrinogen.ResultsAt baseline, higher CAIDE scores were associated with all markers of SVD and inflammation. Longitudinally, CAIDE scores predicted greater total (p<0.001), periventricular (p<0.001) and deep (p=0.012) WMH progression, and increased CRP (p=0.017). Assessment of individual CAIDE components suggested that markers were driven by different risk factors (WMH/EPVS: age/hypertension, lacunes/deep microbleeds: hypertension/obesity). Interaction analyses demonstrated that higher CAIDE scores amplified the effect of age on SVD, and the effect of WMH on poorer memory.ConclusionHigher CAIDE scores, indicating greater risk of dementia, predicts future progression of both WMH and systemic inflammation. Findings highlight the CAIDE score’s potential as both a prognostic and predictive marker in the context of cerebrovascular disease, identifying at-risk individuals who might benefit most from managing modifiable risk.
Although dementia with Lewy bodies (DLB) is a synucleinopathy, it is frequently accompanied by β-amyloid accumulation (Aβ). Elucidating the relationships of Aβ with grey matter atrophy in DLB may yield insights regarding the contributions of comorbid Alzheimer's disease to its disease progression. Twenty healthy controls and twenty-five DLB subjects underwent clinical assessment, [18F]-Florbetapir and 3T MRI. Freesurfer was used to estimate cortical thickness and subcortical volumes and PetSurfer was used to quantify [18F]-Florbetapir standardised uptake value ratio. Principal component analysis was used to identify the dominant Aβ component for correlations with regional cortical thickness, hippocampal subfields and subcortical structures. Relative to healthy controls, the DLB group demonstrated increased Aβ in widespread regions encompassing the frontal and temporo-parietal cortices, whereas cortical thinning was restricted to the temporal lobe. Amongst DLB subjects, the Aβ component was significantly associated with more severe hippocampal and subiculum atrophy. These findings may reflect an early process of superimposed AD-like atrophy in DLB, thereby conferring support for the therapeutic potential of anti-Aβ interventions in people with DLB.
The spatial resolution of 7T MRI approaches the scale of pathologies of interest in degenerative brain diseases, such as amyloid plaques and changes in cortical layers and subcortical nuclei. It may reveal new information about neurodegenerative dementias, although challenges may include increased artefact production and more adverse effects. We performed a systematic review of papers investigating Alzheimer's disease (AD), Lewy body dementia (LBD), frontotemporal dementia (FTD) and Huntington's disease (HD) in vivo using 7T MRI. Of 19 studies identified, 15 investigated AD (the majority of which examined hippocampal subfield changes), and 4 investigated HD. Ultrahigh resolution revealed changes not visible using lower field strengths, such as hippocampal subfield atrophy in mild cognitive impairment. Increased sensitivity to susceptibility-enhanced iron imaging, facilitating amyloid and microbleed examination; for example, higher microbleed prevalence was found in AD than previously recognised. Theoretical difficulties regarding image acquisition and scan tolerance were not reported as problematic. Study limitations included small subject groups, a lack of studies investigating LBD and FTD and an absence of longitudinal data. In vivo 7T MRI may illuminate disease processes and reveal new biomarkers and therapeutic targets. Evidence from AD and HD studies suggest that other neurodegenerative dementias would also benefit from imaging at ultrahigh resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.