While additional research is needed to determine long-term effects and to replicate findings, our results suggest that this culturally sensitive health intervention is a promising way to increase health behaviours which may lead to overall good health for Latina mothers who care for children with IDD across the lifespan.
The ability to detect surgical site infections (SSI) is a critical need for healthcare worldwide, but is especially important in low-income countries, where there is limited access to health facilities and trained clinical staff. In this paper, we present a new method of predicting SSI using a thermal image collected with a smart phone. Machine learning algorithms were developed using images collected as part of a clinical study that included 530 women in rural Rwanda who underwent cesarean section surgery. Thermal images were collected approximately 10 days after surgery, in conjunction with an examination by a trained doctor to determine the status of the wound (infected or not). Of the 530 women, 30 were found to have infected wounds. The data were used to develop two Convolutional Neural Net (CNN) models, with special care taken to avoid overfitting and address the problem of class imbalance in binary classification. The first model, a 6-layer naïve CNN model, demonstrated a median accuracy of AUC=0.84 with sensitivity=71% and specificity=87%. The transfer learning CNN model demonstrated a median accuracy of AUC=0.90 with sensitivity =95% and specificity=84%. To our knowledge, this is the first successful demonstration of a machine learning algorithm to predict surgical infection using thermal images alone. Clinical Relevance-This work establishes a promising new method for automated detection of surgical site infection.
There is a lack of medical awareness concerning PIDs, even among paediatricians, who have been targeted with PID educational programmes in recent years in Brazil. An increase in awareness with regard to these disorders within the medical community is an important step towards improving recognition and treatment of PIDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.