Ciguatera poisoning is linked to the ingestion of seafood that is contaminated with ciguatoxins (CTXs). The structural variability of these polyether toxins in nature remains poorly understood due to the low concentrations present even in highly toxic fish, which makes isolation and chemical characterization difficult. We studied the mass spectrometric fragmentation of Caribbean CTXs, i.e., the epimers C-CTX-1 and -2 (1 and 2), using a sensitive UHPLC–HRMS/MS approach in order to identify product ions of diagnostic value. We found that the fragmentation of the ladder-frame backbone follows a characteristic pattern and propose a generalized nomenclature for the ions formed. These data were applied to the structural characterization of a pair of so far poorly characterized isomers, C-CTX-3 and -4 (3 and 4), which we found to be reduced at C-56 relative to 1 and 2. Furthermore, we tested and applied reduction and oxidation reactions, monitored by LC–HRMS, in order to confirm the structures of 3 and 4. Reduction of 1 and 2 with NaBH4 afforded 3 and 4, thereby unambiguously confirming the identities of 3 and 4. In summary, this work provides a foundation for mass spectrometry-based characterization of new C-CTXs, including a suite of simple chemical reactions to assist the examination of structural modifications.
The phytochemical diversity of Cannabis chemovars is not well understood, and many chemovars were created in informal breeding programs without records of parentage or the criteria for selection. Key criteria for selection sometimes included aroma notes and visual cues, which some breeders associated with pharmacological activity. We hypothesized that the process of selection for scents believed to be related to specific tetrahydrocannabinol levels has resulted in modified terpene biosynthesis in these chemovars. Thirty-two cannabinoids, 29 monoterpenes and 38 sesquiterpenes were measured in 33 chemovars from 5 licensed producers. A classification system based on cannabinoid content was used with targeted metabolomic tools to determine relationships in the phytochemistry. Three monoterpenes, limonene, β-myrcene, and α-pinene, and two sesquiterpenes, caryophyllene and humulene, were abundant in the majority of chemovars. Nine terpenes were present in tetrahydrocannabinol-dominant chemovars. Three monoterpenes and four sesquiterpenes were predominantly found in cannabidiol-containing chemovars. Low abundance terpenes may have been the aromatic cues identified by breeders. The medicinal activity of some of the terpenes is likely to contribute to the pharmacological effect of specific chemovars. Together, these data demonstrate the synergy of compounds in Cannabis chemovars and point to the need for additional research to understand the phytochemical complexity.
There is an explosion in the number of labs analyzing cannabinoids in marijuana (Cannabis sativa L., Cannabaceae) but existing methods are inefficient, require expert analysts, and use large volumes of potentially environmentally damaging solvents. The objective of this work was to develop and validate an accurate method for analyzing cannabinoids in cannabis raw materials and finished products that is more efficient and uses fewer toxic solvents. An HPLC-DAD method was developed for eight cannabinoids in cannabis flowers and oils using a statistically guided optimization plan based on the principles of green chemistry. A single-laboratory validation determined the linearity, selectivity, accuracy, repeatability, intermediate precision, limit of detection, and limit of quantitation of the method. Amounts of individual cannabinoids above the limit of quantitation in the flowers ranged from 0.02 to 14.9% w/w, with repeatability ranging from 0.78 to 10.08% relative standard deviation. The intermediate precision determined using HorRat ratios ranged from 0.3 to 2.0. The LOQs for individual cannabinoids in flowers ranged from 0.02 to 0.17% w/w. This is a significant improvement over previous methods and is suitable for a wide range of applications including regulatory compliance, clinical studies, direct patient medical services, and commercial suppliers.Electronic supplementary materialThe online version of this article (doi:10.1007/s00216-017-0256-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.