Diets high in simple carbohydrates and low in fats lead in the mammalian liver to induction of a set of enzymes involved in lipogenesis. This induction occurs, in part, through transcriptional mechanisms that lead to elevated levels of the mRNA for these enzymes. For most of the lipogenic enzymes, an increase in glucose metabolism is required to trigger the transcriptional response. The intracellular mediator of this signaling pathway is unknown, although evidence suggests either glucose-6-phosphate or xylulose-5-phosphate. Studies to map the regulatory sequences of lipogenic enzyme genes involved in the transcriptional response have been performed for the L-type pyruvate kinase, S14, and acetyl-coenzyme A carboxylase genes. These studies have identified the DNA sequences necessary to link the signal generated by carbohydrate metabolism to specific nuclear transcription factors.
Hepatic expression of the genes encoding L-type pyruvate kinase (L-PK) and S 14 is induced in rats upon feeding them a high carbohydrate, low fat diet. A carbohydrate response element (ChoRE) containing two CACGTG-type E boxes has been mapped in the 5-flanking region of both of these genes. The nature of the ChoRE suggests that a member of the basic/helix-loophelix/leucine zipper family of proteins may be responsible for mediating the response to carbohydrate. Indeed, the upstream stimulatory factor (USF), a ubiquitous basic/helix-loop-helix/leucine zipper protein, is present in hepatic nuclear extracts and binds to the ChoREs of L-PK and S 14 in vitro. We have conducted experiments to determine whether USF is involved in the carbohydratemediated regulation of L-PK and S 14 . For this purpose, dominant negative forms of USF that are capable of heterodimerizing with endogenous USF but not of binding to DNA were expressed in primary hepatocytes. Expression of these forms did not block either S 14 or L-PK induction by glucose. In addition, we have constructed mutant ChoREs that retain their carbohydrate responsiveness but have lost the ability to bind USF. Together, these data suggest that USF is not the carbohydrateresponsive factor that stimulates S 14 and L-PK expression and that a distinct hepatic factor is likely to be responsible for the transcriptional response.
The homeobox gene Pdx-1 plays a key role in the development of the pancreas. In the adult, however, expression of the Pdx-1 gene is restricted to pancreatic beta-cells and endocrine cells of duodenal epithelium. Recently, the transcription factor, upstream stimulatory factor (USF), has been shown to bind in vitro to a mutationally sensitive E-box motif within the 5'-flanking region of the Pdx-1 gene [Sharma, Leonard, Lee, Chapman, Leiter and Montminy (1996) J. Biol. Chem. 271, 2294-2299]. In the present study, we show that USF not only binds to the Pdx-1 gene promoter but also functionally regulates the expression of the Pdx-1 gene in differentiated pancreatic beta-cells. Adenovirus-mediated overexpression of a dominant negative form of USF2 decreased binding of endogenous USF to the E-box element by approximately 90%. This reduction in endogenous USF binding led to a greater than 50% decrease in Pdx-1 gene promoter activity, which, in turn, resulted in marked reductions in Pdx-1 mRNA and protein levels. Importantly, the lower Pdx-1 protein levels led to a greater than 50% reduction in Pdx-1 binding activity to the A3 element on the insulin gene promoter, and a significant reduction in insulin mRNA levels. Overall, our results show that USF functionally regulates Pdx-1 gene expression in differentiated pancreatic beta-cells and provide the first functional data for a role of USF in the regulation of a normal cellular gene.
The homeobox gene Pdx-1 plays a key role in the development of the pancreas. In the adult, however, expression of the Pdx-1 gene is restricted to pancreatic beta-cells and endocrine cells of duodenal epithelium. Recently, the transcription factor, upstream stimulatory factor (USF), has been shown to bind in vitro to a mutationally sensitive E-box motif within the 5'-flanking region of the Pdx-1 gene [Sharma, Leonard, Lee, Chapman, Leiter and Montminy (1996) J. Biol. Chem. 271, 2294-2299]. In the present study, we show that USF not only binds to the Pdx-1 gene promoter but also functionally regulates the expression of the Pdx-1 gene in differentiated pancreatic beta-cells. Adenovirus-mediated overexpression of a dominant negative form of USF2 decreased binding of endogenous USF to the E-box element by approximately 90%. This reduction in endogenous USF binding led to a greater than 50% decrease in Pdx-1 gene promoter activity, which, in turn, resulted in marked reductions in Pdx-1 mRNA and protein levels. Importantly, the lower Pdx-1 protein levels led to a greater than 50% reduction in Pdx-1 binding activity to the A3 element on the insulin gene promoter, and a significant reduction in insulin mRNA levels. Overall, our results show that USF functionally regulates Pdx-1 gene expression in differentiated pancreatic beta-cells and provide the first functional data for a role of USF in the regulation of a normal cellular gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.