This study investigated whether chronic stress-induced spatial memory deficits were caused by changes in the hypothalamic-pituitary-adrenal axis, such as corticosterone (CORT) elevations on the day of memory assessment, rather than the consequence of structural changes in the hippocampus. Male Sprague-Dawley rats were restrained for 6 h/day/21 days, and spatial memory was assessed on the Y-maze on day 22. Ninety minutes before training, rats received a subcutaneous injection of vehicle or metyrapone, a CORT synthesis inhibitor, and then spatial memory was determined 4-h later. The highest dose of metyrapone (75 mg/kg, s.c.) was most effective at preventing stress-induced spatial memory deficits. Chronic stress increased total CORT levels following Y-maze exposure, while acute metyrapone treatment dose-dependently attenuated total and free (unbound) CORT levels in both stress and control conditions. Blood samples taken from a separate subset of chronically stressed rats showed that baseline CORT levels were similar across the restraint period. Finally, chronic stress down-regulated glucocorticoid, but not mineralocorticoid, receptor mRNA expression within the hippocampus (dentate gyrus, CA1, CA2, CA3). These findings suggest that chronic stressinduced spatial memory deficits may be mediated by hypothalamic-pituitary-adrenal axis dysregulation. Specifically, CORT elevations and reductions in hippocampal glucocorticoid receptor expression, at the time of behavioural assessment may be involved, as opposed to a direct effect that is solely dependent upon hippocampal structural changes. These results have significance for treating cognitive decline in conditions associated with elevated glucocorticoids that include subpopulations in ageing, depression, Cushing's disease and Alzheimer's disease.
We previously found that chronic stress conditions producing CA3 dendritic retraction and spatial memory deficits make the hippocampus vulnerable to the neurotoxin ibotenic acid (IBO). The purpose of this study was to determine whether exposure to chronic corticosterone (CORT) under conditions that produce CA3 dendritic retraction would enhance CA3 susceptibility to IBO. Male Sprague Dawley rats were chronically treated for 21 d with CORT in drinking water (400 g/ml), and half were given daily injections of phenytoin (40 mg/kg), an antiepileptic drug that prevents CA3 dendritic retraction. Three days after treatments stopped, IBO was infused into the CA3 region. Conditions producing CA3 dendritic retraction (CORT and vehicle) exacerbated IBO-induced CA3 damage compared with conditions in which CA3 dendritic retraction was not observed (vehicle and vehicle, vehicle and phenytoin, CORT and phenytoin). Additionally, spatial recognition memory was assessed using the Y-maze, revealing that conditions producing CA3 dendritic retraction failed to impair spatial recognition memory. Furthermore, CORT levels in response to a potentially mild stressor (injection and Y-maze exposure) stayed at basal levels and failed to differ among key groups (vehicle and vehicle, CORT and vehicle, CORT and phenytoin), supporting the interpretations that CORT levels were unlikely to have been elevated during IBO infusion and that the neuroprotective actions of phenytoin were not through CORT alterations. These data are the first to show that conditions with prolonged glucocorticoid elevations leading to structural changes in hippocampal dendritic arbors can make the hippocampus vulnerable to neurotoxic challenges. These findings have significance for many disorders with elevated glucocorticoids that include depression, schizophrenia, Alzheimer's disease, and Cushing's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.