Mammalian skeletal muscles express a single triad junctional foot protein, whereas avian muscles have two isoforms of this protein. We investigated whether either case is representative of muscles from other vertebrate classes. We identified two foot proteins in bullfrog and toadfish muscles on the basis of (a) copurification with [3H]epiryanodine binding; (b) similarity to avian muscle foot proteins in native and subunit molecular weights; (c) recognition by anti-foot protein antibodies. The bullfrog and toadfish proteins exist as homooligomers. The subunits of the bullfrog muscle foot protein isoforms are shown to be unique by peptide mapping. In addition, immunocytochemical localization established that the bullfrog muscle isoforms coexist in the same muscle cells. The isoforms in either bullfrog and chicken muscles have comparable [3H]epiryanodine binding capacities, whereas in toadfish muscle the isoforms differ in their levels of ligand binding. Additionally, chicken thigh and breast muscles differ in the relative amounts of the two isoforms they contain, the amounts being similar in breast muscle and markedly different in thigh muscle. In conclusion, in contrast to mammalian skeletal muscle, two foot protein isoforms are present in amphibian, avian, and piscine skeletal muscles. This may represent a general difference in the architecture and/or a functional specialization of the triad junction in mammalian and nonmammalian vertebrate muscles.
Abstract. Dry forests occupy a larger area in the tropics than rain forests. They grow under a wide range of rainfall conditions; the determining characteristics are the occurrence of a dry season of 2–6 months duration, and the dominance of deciduous woody perennials. The knowledge of the ecophysiological properties of woody perennials from these forests, essential for the development of forest restoration strategies, is still scanty. This paper describes the ecophysiological behaviour of 10 species of woody perennials growing in a secondary dry forest, which has been recovering since 1944 on the hills of the Botanical Garden of Caracas. Four species, Astronium graveolens, Bauhinia megalandra, Sapindus saponaria and Tabebuia chrysantha, were initially planted while the others, Bursera simaruba, Capparis flexuosa, Erythroxylon cumanense, E. densum, E. orinocense and Eugenia casearioides, reproduced from seed sources existing in forest remnants growing nearby. Specific leaf areas measured are relatively high, covering a range from 11 to 34 m2/kg. Nitrogen and phosphorus levels are also high compared to data reported from dry forests elsewhere, therefore no nutrient limitation for photosynthetic productivity is apparent. Osmotic pressure (π) of leaf sap, extracted from frozen samples taken during the growing season, is correlated with the corresponding content of soluble sugars and the ions Mg and K; Ca‐ions do not play a significant role in explaining the variance of π. Most species maintained a diluted leaf sap during the rainy season, characterized by π values between 5–15 bar. The osmotic pressure increased strongly in older leaves and during the dry season. Four species showed more stable π values throughout the growing season, with C. flexuosa and B. simaruba characterized by higher and lower π values, respectively. Proline was found to be a reliable indicator of water stress in these woody species, the amount of proline measured in leaf sap being logarithmically correlated with the corresponding π value. Osmotic pressure of leaf sap and leaf xylem tension was higher during the dry season for all species, while the contrary was true for leaf conductance. Leaf conductance was better correlated with leaf‐air vapour pressure deficit than with leaf xylem tension. The most drought‐tolerant species were C. flexuosa, E. casearioides and the three Erythroxylon species. Drought resistance of B. simaruba, B. megalandra and A. graveolens was associated with their high sensitivity to leaf‐air VPD and lower leaf conductances. The other two species occupied intermediate positions.
Seasonal variations in CAM performance of sunexposed and partially shaded populations of Bromelia humilis were measured under natural conditions in a semi-arid region in northern Venezuela. The sun population consisted of smaller plants, with lower chlorophyll and total nitrogen contents per unit leaf area compared with plants from the partial-shade population. During the dry season CAM activity, assessed as nocturnal acid accumulation, was higher in the partial-shade population. Acid accumulation was stimulated by irrigation in both populations within 24 h after treatment. Daily changes in concentration of soluble sugars were opposite to leaf acidity indicating their role as carbon source for acid synthesis during the night. The change in nocturnal sugar concentration was always more than the amount required for acid accumulation, suggesting other carbohydrate-consuming processes such as transportation of sugars out of the leaf. CAM activity was higher during the rainy season, and differences between populations were smaller. At the end of the rainy season reduction of CAM activity caused by drought was first detected in the sun population. Measured ratios of glucan/soluble sugar show a higher proportion of readily utilizable sugars during periods of active CAM and growth. Under conditions of continuous high light intensity and air temperature leading to all year round high potential evaporation in semiarid tropical regions, fully exposed populations of B. humilis show a pronounced reduction of metabolic activity. Partial shade favours growth and CAM activity in this constitutive CAM species. It is concluded that water stress, and not light intensity, is the predominant limiting factor for growth of this species under natural conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.