Treatment with 75 U/kg rhAT is effective in restoring heparin responsiveness and promoting therapeutic anticoagulation in the majority of heparin-resistant patients. Treating heparin-resistant patients with rhAT may decrease the requirement for heparin and fresh frozen plasma.
Treatment with recombinant human antithrombin III in a dose of 75 U/kg is effective in restoring heparin responsiveness and promoting therapeutic anticoagulation for cardiopulmonary bypass in the majority of heparin-resistant patients. Two units of fresh frozen plasma were insufficient to restore heparin responsiveness. There was no apparent increase in bleeding associated with recombinant human antithrombin III.
We examined the effect of acute intermittent hypoxia (IH) on sympathetic neural firing patterns and the role of the carotid chemoreceptors. We hypothesized exposure to acute IH would increase muscle sympathetic nerve activity (MSNA) via an increase in action potential (AP) discharge rates and within-burst firing. We further hypothesized any change in discharge patterns would be attenuated during acute chemoreceptor deactivation (hyperoxia). MSNA (microneurography) was assessed in 17 healthy adults (11 male/6 female; 31 ± 1 yr) during normoxic rest before and after 30 min of experimental IH. Prior to and following IH, participants were exposed to 2 min of 100% oxygen (hyperoxia). AP patterns were studied from the filtered raw MSNA signal using wavelet-based methodology. Compared with baseline, multiunit MSNA burst incidence ( P < 0.01), AP incidence ( P = 0.01), and AP content per burst ( P = 0.01) were increased following IH. There was an increase in the probability of a particular AP cluster firing once ( P < 0.01) and more than once ( P = 0.03) per burst following IH. There was no effect of hyperoxia on multiunit MSNA at baseline or following IH ( P > 0.05); however, hyperoxia following IH attenuated the probability of particular AP clusters firing more than once per burst ( P < 0.01). Acute IH increases MSNA by increasing AP discharge rates and within-burst firing. A portion of the increase in within-burst firing following IH can be attributed to the carotid chemoreceptors. These data advance the mechanistic understanding of sympathetic activation following acute IH in humans.
To study how changes in baroreceptor afferent activity affect patterns of sympathetic neural activation, we manipulated arterial blood pressure with intravenous nitroprusside (NTP) and phenylephrine (PE) and measured action potential (AP) patterns with wavelet-based methodology. We hypothesized that 1) baroreflex unloading (NTP) would increase firing of low-threshold axons and recruitment of latent axons and 2) baroreflex loading (PE) would decrease firing of low-threshold axons. Heart rate (HR, ECG), arterial blood pressure (BP, brachial catheter), and muscle sympathetic nerve activity (MSNA, microneurography of peroneal nerve) were measured at baseline and during steady-state systemic, intravenous NTP (0.5-1.2 µg·kg·min, n = 13) or PE (0.2-1.0 µg·kg·min, n = 9) infusion. BP decreased and HR and integrated MSNA increased with NTP ( P < 0.01). AP incidence (326 ± 66 to 579 ± 129 APs/100 heartbeats) and AP content per integrated burst (8 ± 1 to 11 ± 2 APs/burst) increased with NTP ( P < 0.05). The firing probability of low-threshold axons increased with NTP, and recruitment of high-threshold axons was observed (22 ± 3 to 24 ± 3 max cluster number, 9 ± 1 to 11 ± 1 clusters/burst; P < 0.05). BP increased and HR and integrated MSNA decreased with PE ( P < 0.05). PE decreased AP incidence (406 ± 128 to 166 ± 42 APs/100 heartbeats) and resulted in fewer unique clusters (15 ± 2 to 9 ± 1 max cluster number, P < 0.05); components of an integrated burst (APs or clusters per burst) were not altered ( P > 0.05). These data support a hierarchical pattern of sympathetic neural activation during manipulation of baroreceptor afferent activity, with rate coding of active neurons playing the predominant role and recruitment/derecruitment of higher-threshold units occurring with steady-state hypotensive stress. NEW & NOTEWORTHY To study how changes in baroreceptor afferent activity affect patterns of sympathetic neural activation, we manipulated arterial blood pressure with intravenous nitroprusside and phenylephrine and measured sympathetic outflow with wavelet-based methodology. Baroreflex unloading increased sympathetic activity by increasing firing probability of low-threshold axons (rate coding) and recruiting new populations of high-threshold axons. Baroreflex loading decreased sympathetic activity by decreasing the firing probability of larger axons (derecruitment); however, the components of an integrated burst were unaffected.
Repetitive hypoxic apneas, similar to that observed in sleep apnea, result in resetting of the sympathetic baroreflex to higher blood pressures (BP). This baroreflex resetting is associated with hypertension in preclinical models of sleep apnea (intermittent hypoxia, IH); however, the majority of understanding comes from males. There are data to suggest female rats exposed to IH do not develop high BP. Clinical data further support sex differences in the development of hypertension in sleep apnea, but mechanistic data are lacking. Herein we examined sex-related differences in the effect of IH on sympathetic control of BP in humans. We hypothesized following acute IH, we would observe a rise in muscle sympathetic nerve activity (MSNA) and arterial BP in young men (n=30) which would be absent in young women (n=19). BP and MSNA were measured during normoxic rest prior to and following 30-minutes of IH. Baroreflex sensitivity (modified Oxford) was evaluated before and after IH. A rise in mean BP following IH was observed in men (+2.0±0.7 mmHg, p=0.03), whereas no change was observed in women (-2.7±1.2 mmHg, p=0.11). The elevation in MSNA following IH was not different between groups (4.7±1.1 vs 3.8±1.2 bursts/min, p=0.65). Sympathetic baroreflex sensitivity did not change following IH in either group (p>0.05). Our results support sex-related differences in the effect of IH on neurovascular control of BP and show any BP-raising effects of IH are absent in young women. These data enhance our understanding of sex-specific mechanisms which may contribute to BP changes in sleep apnea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.