Bioelectronic systems derived from peptides and proteins are of particular interest for fabricating novel flexible, biocompatible and bioactive devices. These synthetic or recombinant systems designed for mediating electron transport often mimic the proteinaceous appendages of naturally occurring electroactive bacteria. Drawing inspiration from such conductive proteins with a high content of aromatic residues, we have engineered a fibrous protein scaffold, curli fibers produced by Escherichia coli bacteria, to enable long-range electron transport. We report the genetic engineering and characterization of curli fibers containing aromatic residues of different nature, with defined spatial positioning, and with varying content on single self-assembling CsgA curli subunits. Our results demonstrate the impressive versatility of the CsgA protein for genetically engineering protein-based materials with new functions. Through a scalable purification process, we show that macroscopic gels and films can be produced, with engineered thin films exhibiting a greater conductivity compared with wild-type curli films. We anticipate that this engineered conductive scaffold, and our approach that combines computational modeling, protein engineering, and biosynthetic manufacture will contribute to the improvement of a range of useful bio-hybrid technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.