Decidual NK (dNK) cells, a distinct type of NK cell, are thought to regulate uterine spiral artery remodeling, a process that allows for increased blood delivery to the fetal-placental unit. Impairment of uterine spiral artery remodeling is associated with decreased placental perfusion, increased uterine artery resistance, and obstetric complications such as preeclampsia and intrauterine growth restriction. Ex vivo manipulation of human peripheral blood NK (pNK) cells by a combination of hypoxia, TGFß-1 and 5-aza-2’-deoxycytidine yields cells with phenotypic and in vitro functional similarities to dNK cells, called idNK cells. Here, gene expression profiling shows that CD56Bright idNK cells derived ex vivo from human pNK cells, and to a lesser extent CD56Dim idNK cells, are enriched in the gene expression signature that distinguishes dNK cells from pNK cells. When injected into immunocompromised pregnant mice with elevated uterine artery resistance, idNK cells homed to the uterus and reduced the uterine artery resistance index, suggesting improved placental perfusion.
The immune complement system protects against pathogens; however, excess activation results in disease like hemolytic uremic syndrome, a clinical imitator of preeclampsia. Vascular endothelial factor (VEGF) protects against aberrant complement activation and is inhibited by soluble fms-like tyrosine kinase-1 (sFLT1) in other organs. We hypothesize that sFLT1 promotes complement-mediated placental damage through VEGF inhibition in preeclampsia. Objective: Quantify placental complement activity and sFLT1 expression in preeclampsia, and the subgroup of preeclampsia with hemolysis elevated liver enzymes low platelets (HELLP) syndrome. Methods: Placental complement activation marker C4d, membrane attack complex (MAC), and sFLT1 expression was quantified using immunofluores cence microscopy. Results: Placentas from 18 controls, 25 preeclampsia, including 6 cases of HELLP syndrome were identified. Placental C4d expression was greater in PE (median 6.4 [IQR: 5.1, 8.3]) compared to controls (4.4 [3.6, 5.5]; p = 0.003). MAC expression was also increased in preeclampsia compared to controls (6.5 [5.8, 8.7]; 5.4 [2.9, 5.9], p = 0.001). Placental sFLT1 expression was also higher in preeclampsia (p <0.0001). C4d and MAC were strongly correlated with sFLT1 levels in the placenta (R = 0.72; p < 0.0001 and R = 0.59; p = 0.01, respectively). Complement and sFLT1 expression was elevated in HELLP compared to preeclampsia without laboratory abnormalities, but this difference did not reach statistical significance. Conclusion: Increased placental complement activation and damage was seen in preeclampsia and correlates with sFLT1 expression. Our findings support the importance of the complement pathway in preeclampsia.
Portopulmonary hypertension (POPH) is a poorly understood complication of liver disease associated with significant morbidity and mortality. We sought to identify novel biomarkers of POPH disease presence and severity. We performed a prospective, multicenter, case-control study involving patients with liver disease undergoing right heart catheterization. POPH cases were defined as a mean pulmonary arterial pressure (mPAP) ≥25 mmHg and pulmonary vascular resistance (PVR) >240 dynes˙s˙cm. Plasma samples were collected from the systemic and pulmonary circulation, and antibody microarray was used to identify biomarkers. Characterization and validation of a candidate cytokine, macrophage migration inhibitory factor (MIF), was performed using enzyme-linked immunosorbent assay. Continuous variables were compared using a Mann-Whitney U test and correlated with disease severity using Spearman correlation. MIF levels were elevated in both the systemic and pulmonary circulation in patients with POPH compared with controls .53], P = 0.002). In patients with POPH, MIF levels were positively correlated with PVR (r = 0.58, P = 0.006) and inversely correlated with cardiac output (r = −0.57, P = 0.007). MIF >60 ng/mL or tricuspid regurgitation gradient >50 mmHg had a 92% sensitivity and specificity for the diagnosis of POPH, with a positive predictive value of 86% and a negative predictive value of 96%. MIF is a promising novel biomarker of POPH disease presence and severity in patients with liver disease and portal hypertension.
AKI is a major cause of morbidity and mortality and an important contributor to the development and progression of CKD. Molecular biomarkers that improve the detection and prognostication of AKI are therefore required. We assessed the utility as such of BPI fold-containing family A member 2 (BPIFA2), also known as parotid secretory protein, which we identified a multiplex quantitative proteomics screen of acutely injured murine kidneys. In physiologic conditions, BPIFA2 is expressed specifically in the parotid glands and is abundant in salivary secretions. In our study, AKI induced expression in the kidneys of mice within 3 hours. Furthermore, we detected BPIFA2 protein in plasma and urine in these models as early as 6 hours after injury. However, renal injury did not induce the expression of in mice lacking, an immediate early gene expressed in the kidneys during AKI. Notably, patients with AKI had higher blood and urine levels of BPIFA2 than did healthy individuals. Together, our results reveal that BPIFA2 is a potential early biomarker of AKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.