BACKGROUND Single-dose nevirapine is the cornerstone of the regimen for prevention of mother-to-child transmission of human immunodeficiency virus (HIV) in resource-limited settings, but nevirapine frequently selects for resistant virus in mothers and children who become infected despite prophylaxis. The optimal antiretroviral treatment strategy for children who have had prior exposure to single-dose nevirapine is unknown. METHODS We conducted a randomized trial of initial therapy with zidovudine and lamivudine plus either nevirapine or ritonavir-boosted lopinavir in HIV-infected children 6 to 36 months of age, in six African countries, who qualified for treatment according to World Health Organization (WHO) criteria. Results are reported for the cohort that included children exposed to single-dose nevirapine prophylaxis. The primary end point was virologic failure or discontinuation of treatment by study week 24. Enrollment in this cohort was terminated early on the recommendation of the data and safety monitoring board. RESULTS A total of 164 children were enrolled. The median percentage of CD4+ lymphocytes was 19%; a total of 56% of the children had WHO stage 3 or 4 disease. More children in the nevirapine group than in the ritonavir-boosted lopinavir group reached a primary end point (39.6% vs. 21.7%; weighted difference, 18.6 percentage-points; 95% confidence interval, 3.7 to 33.6; nominal P = 0.02). Baseline resistance to nevirapine was detected in 18 of 148 children (12%) and was predictive of treatment failure. No significant between-group differences were seen in the rate of adverse events. CONCLUSIONS Among children with prior exposure to single-dose nevirapine for perinatal prevention of HIV transmission, antiretroviral treatment consisting of zidovudine and lamivudine plus ritonavir-boosted lopinavir resulted in better outcomes than did treatment with zidovudine and lamivudine plus nevirapine. Since nevirapine is used for both treatment and perinatal prevention of HIV infection in resource-limited settings, alternative strategies for the prevention of HIV transmission from mother to child, as well as for the treatment of HIV infection, are urgently required. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT00307151.)
Background SARS-CoV-2 viral RNA (vRNA) is detected in the bloodstream of some patients with COVID-19 (“RNAemia”) but it is not clear whether this RNAemia reflects viremia (i.e., virus particles) and how RNAemia/viremia is related to host immune responses and outcomes. Methods SARS-CoV-2 vRNA was quantified by ultra-sensitive RT-PCR in plasma samples (0.5-1.0 ml) from observational cohorts of 51 COVID-19 patients including 9 outpatients, 19 hospitalized (non-ICU), and 23 ICU patients, and vRNA levels compared with cross-sectional indices of COVID-19 severity and prospective clinical outcomes. We used multiple imaging methods to visualize virions in pelleted plasma. Results SARS-CoV-2 vRNA was detected in plasma of 100%, 52.6% and 11.1% of ICU, non-ICU, and outpatients respectively. Virions were detected in plasma pellets by electron tomography and immunostaining. Plasma vRNA levels were significantly higher in ICU > non-ICU > outpatients (p<0.0001); and for inpatient, plasma vRNA levels were strongly associated with higher WHO score at admission (p=0.01), maximum WHO score (p=0.002) and discharge disposition (p=0.004). A plasma vRNA level >6,000 copies/ml was strongly associated with mortality (HR: 10.7). Levels of vRNA were significantly associated with several inflammatory biomarkers (p<0.01) but not with plasma neutralizing antibody titers (p=0.8). Conclusions Visualization of virus particles in plasma indicates that SARS-CoV-2 RNAemia is due, at least in part, to viremia. The levels of SARS-CoV-2 RNAemia quantified by ultrasensitive RT-PCR correlate strongly with disease severity, patient outcome and specific inflammatory biomarkers but not neutralizing antibody titers.
The outbreak of Ebola Virus Disease (EVD) in West Africa is the largest ever recorded. Numerous treatment alternatives for EVD have been considered, including widely available re-purposed drugs, but initiation of enrollment into clinical trials has been limited. The proposed trial is an adaptive platform design. Multiple agents and combinations will be investigated simultaneously. Additionally, new agents may enter the trial as they become available, and failing agents may be removed. In order to accommodate the many possible agents and combinations, a critical feature of this design is the use of response adaptive randomization to assign treatment regimens. As the trial progresses, the randomization ratio evolves to favor the arms that are performing better, making the design also suitable for all-cause pandemic preparedness planning. The study was approved by US and Sierra Leone ethics committees, and reviewed by the US FDA. Additionally, data management, drug supply lines, and local sites were prepared. However, in response to the declining epidemic seen in February 2015, the trial was not initiated. Sierra Leone remains ready to rapidly activate the protocol as an emergency response trial in the event of a resurgence of EVD. (ClinicalTrials.gov Identifier: NCT02380625) In summary, we have designed a single controlled trial capable of efficiently identifying highly effective or failing regimens among a rapidly evolving list of proposed therapeutic alternatives for EVD and to treat the patients within the trial effectively based on accruing data. Provision of these regimens, if found safe and effective, would have a major impact on future epidemics by providing effective treatment options.
OBJECTIVES: Host gene expression signatures discriminate bacterial and viral infection but have not been translated to a clinical test platform. This study enrolled an independent cohort of patients to describe and validate a first-in-class host response bacterial/viral test. DESIGN: Subjects were recruited from 2006 to 2016. Enrollment blood samples were collected in an RNA preservative and banked for later testing. The reference standard was an expert panel clinical adjudication, which was blinded to gene expression and procalcitonin results. SETTING: Four U.S. emergency departments. PATIENTS: Six-hundred twenty-three subjects with acute respiratory illness or suspected sepsis. INTERVENTIONS: Forty-five–transcript signature measured on the BioFire FilmArray System (BioFire Diagnostics, Salt Lake City, UT) in ~45 minutes. MEASUREMENTS AND MAIN RESULTS: Host response bacterial/viral test performance characteristics were evaluated in 623 participants (mean age 46 yr; 45% male) with bacterial infection, viral infection, coinfection, or noninfectious illness. Performance of the host response bacterial/viral test was compared with procalcitonin. The test provided independent probabilities of bacterial and viral infection in ~45 minutes. In the 213-subject training cohort, the host response bacterial/viral test had an area under the curve for bacterial infection of 0.90 (95% CI, 0.84–0.94) and 0.92 (95% CI, 0.87–0.95) for viral infection. Independent validation in 209 subjects revealed similar performance with an area under the curve of 0.85 (95% CI, 0.78–0.90) for bacterial infection and 0.91 (95% CI, 0.85–0.94) for viral infection. The test had 80.1% (95% CI, 73.7–85.4%) average weighted accuracy for bacterial infection and 86.8% (95% CI, 81.8–90.8%) for viral infection in this validation cohort. This was significantly better than 68.7% (95% CI, 62.4–75.4%) observed for procalcitonin (p < 0.001). An additional cohort of 201 subjects with indeterminate phenotypes (coinfection or microbiology-negative infections) revealed similar performance. CONCLUSIONS: The host response bacterial/viral measured using the BioFire System rapidly and accurately discriminated bacterial and viral infection better than procalcitonin, which can help support more appropriate antibiotic use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.