Behavioral ecologists have long studied the role of coloration as a defense against natural enemies. Recent reviews of defensive coloration have emphasized that these visual signals are rarely selected by single predatory receivers. Complex interactions between signaler, receiver, and environmental pressures produce a striking array of color strategies—many of which must serve multiple, sometimes conflicting, functions. In this review, we describe six common conflicts in selection pressures that produce multifunctional color patterns, and three key strategies of multifunctionality. Six general scenarios that produce conflicting selection pressures on defensive coloration are: (1) multiple antagonists, (2) conspecific communication, (3) hunting while being hunted, (4) variation in transmission environment, (5) ontogenetic changes, and (6) abiotic/physiological factors. Organisms resolve these apparent conflicts via (1) intermediate, (2) simultaneous, and/or (3) plastic color strategies. These strategies apply across the full spectrum of color defenses, from aposematism to crypsis, and reflect how complexity in sets of selection pressures can produce and maintain the diversity of animal color patterns we see in nature. Finally, we discuss how best to approach studies of multifunctionality in animal color, with specific examples of unresolved questions in the field.
When constraints on antipredator coloration shift over the course of development, it can be advantageous for animals to adopt different color strategies for each life stage. Many caterpillars in the genus Papilio exhibit unique ontogenetic color sequences: e.g., early instars that masquerade as bird feces, with later instars possessing eyespots. I hypothesize that larvae abandon feces masquerade in lieu of eyespots due to ontogenetic changes in signaler size. This ontogenetic pattern also occurs within broader seasonal shifts in background color and predator activity. I conducted predation experiments with artificial prey to determine how potential signaling constraints (specifically size and season) shape predation risk, and consequently the expression of ontogenetic color change in Papilio larvae. Seasonally, both predation and background greenness declined significantly from July to September, though there was little evidence that these patterns impacted the effectiveness of either color strategy. Caterpillar size and color strongly affected the attack rate of avian predators: attacks increased with prey size regardless of color, and eyespotted prey were attacked more than masquerading prey overall. These results may reflect a key size-mediated tradeoff between conspicuousness and intimidation in eyespotted prey, and raise questions about how interwoven aspects of behavior and signal environment might maintain the prevalence of large, eyespotted larvae in nature.
Deimatic displays typically involve body parts that can conceal or reveal visual signals, potentially reducing detectability at a distance while startling predators up close. Some species may achieve this “conceal-then-reveal” effect using modified aspects of their environment (environmental deimatism hypothesis). The larvae of spicebush swallowtail butterflies (Papilio troilus) possess large eyespots, and rest in leaf rolls during the day. I tested the hypothesis that leaf rolls reduce eyespot conspicuousness while maintaining eyespot effectiveness by comparing avian predation on 659 artificial larvae: eyespotted and non-eyespotted, presented in leaf rolls or on open leaves. Leaf rolls reduced predation regardless of color pattern. Eyespots also reduced predation, but only for artificial larvae in leaf rolls. On open leaves, eyespots neither increased nor decreased predation. These results suggest that eyespots and leaf rolls can combine to create a deimatic display – and that this strategy likely evolved to enhance existing antipredator effects of leaf rolls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.