The Trichoptera, or caddisflies, are traditionally split into two taxonomic subdivisions: the 'retreat-making' Annulipalpia and the 'case-making' Integripalpia (sensu Ross). The monophyly of these groups is well documented; however, the establishment of a third subdivision, 'Spicipalpia', and the positions of the five 'spicipalpian' families is much debated. In contrast to previous molecular studies using nuclear ribosomal RNA, a recent trichopteran study (using nuclear protein-coding genes) placed one of these 'spicipalpian' families, the free-living predatory Rhyacophilidae, as the sister taxon to the rest of Trichoptera, a result that has significant implications for both the understanding of trichopteran evolution and its timing. This paper sets out to investigate the relationships of Trichoptera using several newly sequenced genes, together with previously published gene sequences. This dataset is the largest trichopteran dataset to date, covering six independent genes and > 10 000 nucleotides, and containing 185 species representing 49 families. With all data included, likelihood and Bayesian analyses support a monophyletic Annulipalpia and a monophyletic Integripalpia, which includes the 'spicipalpians' as a paraphyletic grade at the base of this clade. However, an analysis of the protein-coding data alone using similar analytical methods recovers Rhyacophilidae as the most basal taxon in Trichoptera, with low support. A reanalysis correcting for nucleotide composition bias provides support for the placement of the 'spicipalpian' taxa as sister to the Integripalpia, consistent with the total data analysis, suggesting that the basal position of Rhyacophilidae in the uncorrected analysis could be (or is probably) an artefact of base composition. We find it likely that ancestral trichopterans made incipient cases and retreats, and these had independent origins as precocious pupal chambers. Molecular dating analysis in beast, using the birth-death model of speciation, with a relaxed-clock model of sequence evolution informed by 37 fossil constraints, suggests that the most recent common ancestor of Trichoptera appeared in the Permian (c. 275 Ma) in line with the first appearance of Trichoptera in the fossil record, and that vicariance explains the distribution of most trichopteran taxa. A new infraordinal name, Phryganides, is introduced for the tube-case-making families of Integripalpia.
We present an inclusive molecular phylogeny for Hylarana across its global distribution, utilizing two mitochondrial and four nuclear gene regions for 69 of the 97 currently described species. We use phylogenetic methods to test monophyly of Hylarana, determine relationships among ten putative subgenera, identify major clades, reconstruct biogeographic history, and estimate continental dispersal dates. Results support Hylarana as a monophyletic group originating approximately 26.9MYA and comprising eight clades that partly correspond to currently described subgenera plus two new groups. The African and Australasian species each form clades embedded within a paraphyletic Southeast Asian group. We estimate that Africa and Australasia were colonized by Hylarana s.l. from SE Asia approximately 18.7 and 10.8MYA, respectively. Biogeographic reconstructions also support three separate colonization events in India from Southeast Asia. Examination of museum specimens identified morphological characters useful for delineating subgenera and species. We herein elevate all supported subgenera to genus rank and formally describe two new genera to produce a revised taxonomy congruent with our new phylogenetic and biogeographic findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.