Background: Meniscal ramp lesions have been defined as a tear of the peripheral attachment of the posterior horn of the medial meniscus (PHMM) at the meniscocapsular junction or an injury to the meniscotibial attachment. Precise anatomic descriptions of these structures are limited in the current literature. Purpose: To quantitatively and qualitatively describe the PHMM and posteromedial capsule anatomy pertaining to the location of a meniscal ramp lesion with reference to surgically relevant landmarks. Study Design: Descriptive laboratory study. Methods: Fourteen male nonpaired fresh-frozen cadavers were used. The locations of the posteromedial meniscocapsular and meniscotibial attachments were identified. Measurements to surgically relevant landmarks were performed with a coordinate measuring system. To further analyze the posteromedial meniscocapsular and meniscotibial attachments, hematoxylin and eosin and alcian blue staining were conducted on a separate sample of 10 nonpaired specimens. Results: The posterior meniscocapsular attachment had a mean ± SD length of 20.2 ± 6.0 mm and attached posteroinferiorly to the PHMM at a mean depth of 36.4% of the total posterior meniscal height. The posterior meniscotibial ligament attached on the PHMM 16.5 mm posterior and 7.7 mm medial to the center of the posterior medial meniscal root attachment. The meniscotibial ligament tibial attachment was 5.9 ± 1.3 mm inferior to the articular cartilage margin of the posterior medial tibial plateau. The posterior meniscocapsular attachment converged with the meniscotibial ligament at the most posterior point of the meniscocapsular junction in all specimens. Histological staining of the meniscocapsular and meniscotibial ligament PHMM attachments showed similar structure, cell density, and fiber directionality, with no qualitative difference in the makeup of their collagen matrices across all specimens. Conclusion: The anatomy of the area where a medial meniscal ramp tear occurs revealed that the 2 posterior meniscal attachments merged at a common attachment on the PHMM. Histological analysis validated a shared attachment point of the meniscocapsular and meniscotibial attachments of the PHMM. Clinical Relevance: The findings of this study provide the anatomic foundation for an improved understanding of the meniscocapsular and meniscotibial attachments of the PHMM, which may help provide a more precise definition of a meniscal ramp lesion.
SummaryIn bacteria, the highly conserved RsmA/CsrA family of RNA-binding proteins functions as global posttranscriptional regulators acting on mRNA translation and stability. Through phenotypic complementation of an rsmA mutant in Pseudomonas aeruginosa, we discovered a family member, termed RsmN. Elucidation of the RsmN crystal structure and that of the complex with a hairpin from the sRNA, RsmZ, reveals a uniquely inserted α helix, which redirects the polypeptide chain to form a distinctly different protein fold to the domain-swapped dimeric structure of RsmA homologs. The overall β sheet structure required for RNA recognition is, however, preserved with compensatory sequence and structure differences, allowing the RsmN dimer to target binding motifs in both structured hairpin loops and flexible disordered RNAs. Phylogenetic analysis indicates that, although RsmN appears unique to P. aeruginosa, homologous proteins with the inserted α helix are more widespread and arose as a consequence of a gene duplication event.
One of the most striking topological features to be found in a protein is that of a distinct knot formed by the path of the polypeptide backbone. Such knotted structures represent some of the smallest ''self-tying'' knots observed in Nature. Proteins containing a knot deep within their structure add an extra complication to the already challenging protein-folding problem; it is not obvious how, during the process of folding, a substantial length of polypeptide chain manages to spontaneously thread itself through a loop. Here, we probe the folding mechanism of YibK, a homodimeric ␣/-knot protein containing a deep trefoil knot at its carboxy terminus. By analyzing the effect of mutations made in the knotted region of the protein we show that the native structure in this area remains undeveloped until very late in the folding reaction. Single-site destabilizing mutations made in the knot structure significantly affect only the folding kinetics of a lateforming intermediate and the slow dimerization step. Furthermore, we find evidence to suggest that the heterogeneity observed in the denatured state is not caused by isomerization of the single cis proline bond as previously thought, but instead could be a result of the knotting mechanism. These results allow us to propose a folding model for YibK where the threading of the polypeptide chain and the formation of native structure in the knotted region of the protein occur independently as successive events.intermediate states ͉ methyltransferases ͉ parallel pathways ͉ knotted proteins ͉ trefoil knot
CsrA/RsmA homologs are an extensive family of ribonucleic acid (RNA)-binding proteins that function as global post-transcriptional regulators controlling important cellular processes such as secondary metabolism, motility, biofilm formation and the production and secretion of virulence factors in diverse bacterial species. While direct messenger RNA binding by CsrA/RsmA has been studied in detail for some genes, it is anticipated that there are numerous additional, as yet undiscovered, direct targets that mediate its global regulation. To assist in the discovery of these targets, we propose a sequence-based approach to predict genes directly regulated by these regulators. In this work, we develop a computer code (CSRA_TARGET) implementing this approach, which leads to predictions for several novel targets in Escherichia coli and Pseudomonas aeruginosa. The predicted targets in other bacteria, specifically Salmonella enterica serovar Typhimurium, Pectobacterium carotovorum and Legionella pneumophila, also include global regulators that control virulence in these pathogens, unraveling intricate indirect regulatory roles for CsrA/RsmA. We have experimentally validated four predicted RsmA targets in P. aeruginosa. The sequence-based approach developed in this work can thus lead to several testable predictions for direct targets of CsrA homologs, thereby complementing and accelerating efforts to unravel global regulation by this important family of proteins.
Gene regulation requires selective targeting of DNA regulatory enhancers over megabase distances. Here we show that Evf2, a cloud-forming Dlx5/6 ultraconserved enhancer (UCE) lncRNA, simultaneously localizes to activated (Umad1, 1.6 Mb distant) and repressed (Akr1b8, 27 Mb distant) chr6 target genes, precisely regulating UCE-gene distances and cohesin binding in mouse embryonic forebrain GABAergic interneurons (INs). Transgene expression of Evf2 activates Lsm8 (12 Mb distant) but fails to repress Akr1b8, supporting trans activation and long-range cis repression. Through both short-range (Dlx6 antisense) and long-range (Akr1b8) repression, the Evf2-5'UCE links homeodomain and mevalonate pathway-regulated enhancers to IN diversity. The Evf2-3' end is required for long-range activation but dispensable for RNA cloud localization, functionally dividing the RNA into 3'-activator and 5'UCE repressor and targeting regions. Together, these results support that Evf2 selectively regulates UCE interactions with multi-megabase distant genes through complex effects on chromosome topology, linking lncRNA-dependent topological and transcriptional control with interneuron diversity and seizure susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.