Background
Current upper extremity outcome measures for persons with cervical spinal cord injury (cSCI) lack the ability to directly collect quantitative information in home and community environments. A wearable first-person (egocentric) camera system is presented that aims to monitor functional hand use outside of clinical settings.
Methods
The system is based on computer vision algorithms that detect the hand, segment the hand outline, distinguish the user’s left or right hand, and detect functional interactions of the hand with objects during activities of daily living. The algorithm was evaluated using egocentric video recordings from 9 participants with cSCI, obtained in a home simulation laboratory. The system produces a binary hand-object interaction decision for each video frame, based on features reflecting motion cues of the hand, hand shape and colour characteristics of the scene.
Results
The output from the algorithm was compared with a manual labelling of the video, yielding F1-scores of 0.74 ± 0.15 for the left hand and 0.73 ± 0.15 for the right hand. From the resulting frame-by-frame binary data, functional hand use measures were extracted: the amount of total interaction as a percentage of testing time, the average duration of interactions in seconds, and the number of interactions per hour. Moderate and significant correlations were found when comparing these output measures to the results of the manual labelling, with
ρ
= 0.40, 0.54 and 0.55 respectively.
Conclusions
These results demonstrate the potential of a wearable egocentric camera for capturing quantitative measures of hand use at home.
Despite some privacy and comfort concerns, participants believed that the information obtained would be useful. With appropriate strategies to minimize the data stored and recording duration, wearable cameras can be a well-accepted tool to track function in the home and community after SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.