Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for numerous applications including energy storage, heterogeneous catalysis, and greenhouse gas adsorption. Much of the early work has focused on the bulk properties of microcrystalline ZIFs. Herein, we focus on identifying the nature of the surface of ZIF-8 by studying a supported ZIF-8 nanoparticle film using surface characterization techniques. We have experimentally identified the presence of a zinc-rich surface terminated by carbonates and water/hydroxyl groups (in addition to the expected methylimidazole terminations) using X-ray photoelectron spectroscopy (XPS). The thermal stability of ZIF-8 thin films was also investigated using scanning electron microscopy (SEM) and temperature-programmed reaction spectroscopy (TPRS). We determined the onset of decomposition of ZIF-8 thin films to be approximately 630 K using TPRS in an ultrahigh vacuum (UHV) environment. This work presents the first characterization steps needed to study the evolution of ZIF surfaces in situ using surface characterization techniques. Such techniques are capable of determining reaction products and tracking intermediates and surface evolution in gas adsorption/reaction studies of thin films.
Protein-reactive electrophiles are critical to chemical proteomic applications including activity-based protein profiling, site-selective protein modification, and covalent inhibitor development. Here, we explore the protein reactivity of a panel of aryl halides that function through a nucleophilic aromatic substitution (S(N)Ar) mechanism. We show that the reactivity of these electrophiles can be finely tuned by varying the substituents on the aryl ring. We identify p-chloro- and fluoronitrobenzenes and dichlorotriazines as covalent protein modifiers at low micromolar concentrations. Interestingly, investigating the site of labeling of these electrophiles within complex proteomes identified p-chloronitrobenzene as highly cysteine selective, whereas the dichlorotriazine favored reactivity with lysines. These studies illustrate the diverse reactivity and amino-acid selectivity of aryl halides and enable the future application of this class of electrophiles in chemical proteomics.
The recent spread of Zika virus stimulated extensive research on its structure, pathogenesis, and immunology, but mechanistic study of entry has lagged behind, in part due to the lack of a defined reconstituted system. Here, we report Zika membrane fusion measured using a platform that bypasses these barriers, enabling observation of single-virus fusion kinetics without receptor reconstitution. Surprisingly, target membrane binding and low pH are sufficient to trigger viral hemifusion to liposomes containing only neutral lipids. Second, although the extent of hemifusion strongly depends on pH, hemifusion rates are relatively insensitive to pH. Kinetic analysis shows that an off-pathway state is required to capture this pH-dependence and suggests this may be related to viral inactivation. Our surrogate-receptor approach thus yields new understanding of flaviviral entry mechanisms and should be applicable to many emerging viruses.
The mechanism(s) by which cell-tethered mucins modulate infection by influenza A viruses (IAVs) remain an open question. Mucins form both a protective barrier that can block virus binding and recruit IAVs to bind cells via the sialic acids of cell-tethered mucins. To elucidate the molecular role of mucins in flu pathogenesis, we constructed a synthetic glycocalyx to investigate membrane-tethered mucins in the context of IAV binding and fusion. We designed and synthesized lipid-tethered glycopolypeptide mimics of mucins and added them to lipid bilayers, allowing chemical control of length, glycosylation, and surface density of a model glycocalyx. We observed that the mucin mimics undergo a conformational change at high surface densities from a compact to an extended architecture. At high surface densities, asialo mucin mimics inhibited IAV binding to underlying glycolipid receptors, and this density correlated to the mucin mimic’s conformational transition. Using a single virus fusion assay, we observed that while fusion of virions bound to vesicles coated with sialylated mucin mimics was possible, the kinetics of fusion was slowed in a mucin density-dependent manner. These data provide a molecular model for a protective mechanism by mucins in IAV infection, and therefore this synthetic glycocalyx provides a useful reductionist model for studying the complex interface of host–pathogen interactions.
The adsorption of CO 2 and H 2 O by ZIF-8 thin films was investigated using X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) in situ under low-temperature, low-pressure conditions. Using these two techniques, we demonstrate the ability to clearly distinguish molecules that exhibit significant adsorption in the pore structure of ZIF-8, from molecules that adsorb predominantly at outer surface sites. In particular, CO 2 was found to penetrate into the pore structure, while H 2 O resided predominantly at the surface. CO 2 uptake was quantified, and mobility within the films was investigated. The ability to distinguish surface processes from those that primarily occur in the bulk is key to understanding the properties of nanoporous materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.