Tissue damage by proinflammatory cytokines is attenuated at both systemic and cellular levels by counter anti-inflammatory factors such as corticosteroids. Target cell responses to corticosteroids are dependent on several factors including prereceptor regulation via local steroidogenic enzymes. In particular, two isozymes of 11beta-hydroxysteroid dehydrogenase (11beta-HSD), by interconverting hormonally active cortisol (F) to inactive cortisone (E), regulate the peripheral action of corticosteroids 11beta-HSD1 by converting E to F and 11beta-HSD2 by inactivating F to E. In different in vitro and in vivo systems both 11beta-HSD isozymes have been shown to be expressed in osteoblasts (OBs). Using the MG-63 human osteosarcoma cell-line and primary cultures of human OBs, we have studied the regulation of osteoblastic 11beta-HSD isozyme expression and activity by cytokines and hormones with established roles in bone physiology. In MG-63 cells, interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) potently inhibited 11beta-HSD2 activity (cortisol-cortisone conversion) and messenger RNA (mRNA) levels in a dose-dependent manner while stimulating reciprocal expression of 11beta-HSD1 mRNA and activity (cortisone-cortisol conversion). A similar rise in 11beta-HSD1 reductase activity also was observed in primary cultures of OBs treated with 10 ng/ml TNF-alpha. Pretreatment of MG-63 cells with 0.1 ng/ml IL-1beta resulted in increased cellular sensitivity to physiological glucocorticoids as shown by induction of serum and glucocorticoid-inducible kinase (SGK; relative increase with 50 nM F but no IL-1beta pretreatment 1.12 +/- 0.34; with pretreatment 2.63 +/- 0.50; p < 0.01). These results highlight a novel mechanism within bone cells whereby inflammatory cytokines cause an autocrine switch in intracellular corticosteroid metabolism by disabling glucocorticoid inactivation (11beta-HSD2) while inducing glucocorticoid activation (11beta-HSD1). Therefore, it can be postulated that some of the effects of proinflammatory cytokines within bone (e.g., periarticular erosions in inflammatory arthritis) are mediated by this mechanism.
Glucocorticoid (GC) excess adversely affects skin integrity, inducing thinning and impaired wound healing. Aged skin, particularly that which has been photo-exposed, shares a similar phenotype. Previously, we demonstrated age-induced expression of the GC-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in cultured human dermal fibroblasts (HDFs). Here, we determined 11β-HSD1 levels in human skin biopsies from young and older volunteers and examined the aged 11β-HSD1 KO mouse skin phenotype. 11β-HSD1 activity was elevated in aged human and mouse skin and in PE compared with donor-matched photo-protected human biopsies. Age-induced dermal atrophy with deranged collagen structural organization was prevented in 11β-HSD1 KO mice, which also exhibited increased collagen density. We found that treatment of HDFs with physiological concentrations of cortisol inhibited rate-limiting steps in collagen biosynthesis and processing. Furthermore, topical 11β-HSD1 inhibitor treatment accelerated healing of full-thickness mouse dorsal wounds, with improved healing also observed in aged 11β-HSD1 KO mice. These findings suggest that elevated 11β-HSD1 activity in aging skin leads to increased local GC generation, which may account for adverse changes occurring in the elderly, and 11β-HSD1 inhibitors may be useful in the treatment of age-associated impairments in dermal integrity and wound healing.
The risk of glucocorticoid-induced osteoporosis increases substantially with age but there is considerable individual variation. In recent studies we have shown that the effects of glucocorticoids on bone are dependent on autocrine actions of the enzyme 11-hydroxysteroid dehydrogenase type 1 (11-HSD1); expression of 11-HSD1 in osteoblasts (OBs) facilitates local synthesis of active glucocorticoids with consequent effects on osteoblastic proliferation and differentiation. Using primary cultures of human OBs, we have now characterized the age-specific variation in osteoblastic 11-HSD1 and defined enzyme kinetics and regulation using natural and therapeutic glucocorticoids. 11-HSD1 reductase activity (cortisone to cortisol conversion) was recognized in all OB cultures and correlated positively with age (r ؍ 0.58 with all cultures, p < 0.01, and n ؍ 18; r ؍ 0.87 with calcaneal-derived cultures, p < 0.001, and n ؍ 14). Glucocorticoid treatment caused a time-and dose-dependent increase in 11-HSD1 activity over control (e.g., dexamethasone [DEX; 1 M], 2.6-fold ؎ 0.5 (mean ؎ SE), p < 0.001, and n ؍ 16; cortisol (100 nM), 1.7-fold ؎ 0.1, p < 0.05, and n ؍ 14). Similar increases in 11-HSD1 mRNA expression were indicated using real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analyses (3.5-fold with DEX, p < 0.01; 2.5-fold with cortisol, p < 0.05). The capacity of 11-HSD1 to metabolize the synthetic glucocorticoids prednisone and prednisolone was investigated in human OBs (hOBs) and fetal kidney-293 cells stably transfected with human 11-HSD1 cDNA. Transfected cells and hOBs were able to interconvert prednisone and prednisolone with reaction kinetics indistinguishable from those for cortisone and cortisol. To assess the in vivo availability of substrates for osteoblastic 11-HSD1, plasma cortisone and prednisone levels were measured in normal males before and after oral prednisolone (5 mg). The 9:00 a.m. serum cortisone levels were 110 ؎ 5 nmol/liter and prednisone levels peaked at 78 ؎ 23 nmol/liter 120 minutes after administration of prednisolone. Thus, therapeutic use of steroids increases substrate availability for 11-HSD1 in bone. These studies indicate that activation of glucocorticoids at an autocrine level within bone is likely to play an important role in the age-related decrease in bone formation and increased risk of glucocorticoid-induced osteoporosis. (J Bone Miner Res 2002;17: 979 -986)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.