The coordination of activity between brain cells is a key determinant of neural circuit function; nevertheless, approaches that selectively regulate communication between two distinct cellular components of a circuit, while leaving the activity of the presynaptic brain cell undisturbed remain sparce. To address this gap, we developed a novel class of electrical synapses by selectively engineering two connexin proteins found in Morone americana (white perch fish): connexin34.7 (Cx34.7) and connexin35 (Cx35). By iteratively exploiting protein mutagenesis, a novel in vitro assay of connexin docking, and computational modeling of connexin hemichannel interactions, we uncovered the pattern of structural motifs that broadly determine connexin hemichannel docking. We then utilized this knowledge to design Cx34.7 and Cx35 hemichannels that dock with each other, but not with themselves nor other major connexins expressed in the human central nervous system. We validated these hemichannels in vivo, demonstrating that they facilitate communication between two neurons in Caenorhabditis elegans and recode a learned behavioral preference. This system can be applied to edit circuits composed by pairs of genetically defined brain cell types across multiple species. Thus, we establish a potentially translational approach, Long-term integration of Circuits using connexins (LinCx), for context-precise circuit-editing with unprecedented spatiotemporal specificity.
Gap junctions are membrane spanning channels that connect the cytoplasm of apposed cells, allowing for the passage of small molecules and ions. They are formed by the connexin (Cx) family of proteins which assemble into hexameric hemichannels on each cell and dock to create gap junctional channels between two cells. Despite importance of various Cx isoforms in human physiology and disease, available tools for screening and discriminating their interactions such as hemichannel compatibility, docking and permeability are limited. Here, we developed FETCH (flow enabled tracking of connexosomes in HEK cells), a method which utilizes the generation of annular gap junctions (connexosomes) as downstream indicators of hemichannel compatibility for intercellular docking. First, we show that fluorescent connexosomes create a cellular phenotype that is detectable by flow cytometry analysis. We then show that FETCH identifies homotypic and heterotypic docking of many single isoform connexin hemichannels. Finally, we demonstrate that FETCH captures the impact of disease-relevant connexin protein mutations on gap junction formation. Thus, we establish a new flow cytometry-based method that is amenable to the high-throughput classification of gap junction hemichannel docking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.