The 1,3 intramolecular hydrogen transfer reaction in free thymine and in Mg(II)-thymine have been studied at the density functional theory level. The mechanism of intramolecular proton transfer in these systems emerges from the analysis of the reaction force profile along the reaction path; it is rationalized in terms of structural and electronic reorganizations that take place during the chemical transformation. Results show that the presence of Mg(II) monocoordinated to thymine activates the hydrogenic motion by inducing structural and electronic changes in the molecular backbone. In the metallic complex, it is found that the hydrogen transfer is followed by a relaxation process that facilitates the metal cation migration to form a bicoordinated complex.
This work revisits the topological characterization of the Diels-Alder reaction between 1,3-butadiene and ethylene. In contrast to the currently accepted rationalization, we here provide strong evidence in support of a representation in terms of seven structural stability domains separated by a sequence of 10 elementary catastrophes, but all only of the fold type, i.e., C4H6 + C2H4 :[FF]F † -0 : C6H10. Such an unexpected finding provides fundamental new insights opening simplifying perspectives concerning the rationalization of the CC bond formation in pericyclic reactions in terms of the simplest Thom's elementary catastrophe, namely the one-(state) variable, one-(control) parameter function.
The Wittig reaction between triphenylphosphine methylide and benzaldehyde has been studied both from conceptual and computational approaches. The supernucleophilic character of ylide accounts for the feasibility of the initial nucleophilic attack. The nature of bonding driving the formation of the first oxaphosphetane (OPA) intermediate in such a domino reaction is examined within a topological-based bonding evolution theory perspective. The sequence of the electronic flow associated to the changes in electron density supports a rationalization via two main electronic stages characterizing the single kinetic step: first, the C−C bond formation, which takes place via donation of electron density of the ylide carbon to the carbonyl carbon of benzaldehyde at a C−C distance of 2.02 Å, is formally associated to the transition state region; then, the P−O bond formation via the donation of electron density of the nonbonding region of the carbonyl oxygen to phosphorus at a P−O distance of 2.06 Å is located at the end of the reaction path. The detailed picture of bonding patterns suggests that the OPA formation in the Wittig mechanism can be better understood in terms of a two-stage one-step mechanism beyond molecular orbital considerations behind the traditionally accepted [2+2] cycloaddition proposal.
The effect of Ni(II), Cu(II) and Zn(II) association on the diketo/keto-enol tautomerism of thymine has been investigated through the use of B3LYP density functional theory calculations. Final energies were obtained at the B3LYP/6-311+G(2df,2p)//B3LYP/6-311+G(d,p) level of theory. Ni(II) and Cu(II) lead to an oxidation of thymine which for Zn(ii) is only partial and catalyze the tautomerization process, this catalytic effect being much larger for Ni(2+) and Zn(2+) than for Cu(2+). One of the most significant consequences of the oxidation of the base is that the calculated BDE's are primarily dictated by the value of the second ionization potential of the metal, and therefore follow the sequence Cu(2+) > Ni(2+) > Zn(2+). Also importantly, metal dication association leads to a stabilization of the keto-enol tautomer, which becomes the most stable form upon interaction with Ni(2+) and Zn(2+). This stabilization enhancement is the consequence of three concomitant factors, namely, (i) a stronger interaction of the metal cation with the carbonyl oxygen, (ii) the interaction of the metal with the dehydrogenated ring nitrogen, (iii) an aromatization of the six-membered ring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.