Abstract-A novel state-space realization for parameterized macromodeling is proposed in this paper. A judicious choice of the state-space realization is required in order to account for the assumed smoothness of the state-space matrices with respect to the design parameters. This technique is used in combination with suitable interpolation schemes to interpolate a set of state-space matrices, and hence the poles and residues indirectly, in order to build accurate parameterized macromodels. The key points of the novel state-space realizations are the choice of a proper pivot matrix and a well-conditioned solution of a Sylvester equation. Stability and passivity are guaranteed by construction over the design space of interest. Pertinent numerical examples validate the proposed Sylvester realization for parameterized macromodeling.
Abstract-The demands for miniature sized circuits with higher operating speeds have increased the complexity of the circuit, while at high frequencies it is known that effects such as crosstalk, attenuation and delay can have adverse effects on signal integrity. To capture these high speed effects a very large number of system equations is normally required and hence model order reduction techniques are required to make the simulation of the circuits computationally feasible. This paper proposes a higher order Krylov subspace algorithm for model order reduction of time-delay systems based on a Laguerre expansion technique. The proposed technique consists of three sections i.e., first the delays are approximated using the recursive relation of Laguerre polynomials, then in the second part, the reduced order is estimated for the time-delay system using a delay truncation in the Laguerre domain and in the third part, a higher order Krylov technique using Laguerre expansion is computed for obtaining the reduced order time-delay system. The proposed technique is validated by means of real world numerical examples.
Abstract-This paper describes a data-driven method to model the radiation patterns (over a large angular region) and scattering parameters of antennas as a function of the geometry of the antenna. The radiation pattern model consists of a linear combination of characteristic basis function patterns (CBFPs), where the expansion coefficients of the CBFPs are functions of geometrical features of the antenna. Scattering parameters are modeled by means of parameterized state-space matrices. The obtained models are quick to evaluate and are thus suitable for design activities where multiple simulations are required. The proposed method is validated through illustrative examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.