Although further research is necessary, our preliminary results support the novel possibility that the IPLD photo-induces chaotic dynamics that modulate complex physiologically reparative bioeffects.
The objective of this review is to propose and document a role for the water oscillator in near-infrared (NIR) photobiomodulation. Greater understanding of the role of the water oscillator may add to a more-coherent description of central effects of NIR light on redox centers and key transmembrane enzymes such as cytochrome c oxidase (CcO). In addition, water provides a complementary pathway for absorption and transportation of NIR energy in photobiomodulation. Because of its unexpected potential, we propose terming it the "water oscillator paradox." Photobiologic mechanisms involved in the treatment of complex diseases are discussed in light of the present state of the art.
Though additional studies are necessary to fully explore the biological effects of the PIPBM induced by the IPLD, this mechanism may have multiple potential applications in medicine that are the subject of active current and future investigations.
Spin-lattice data reflected significant changes in tissues induced by the burn and a tendency towards control values for all burned groups. Meanwhile, the tau(c) value of GVI suggests the possibility of enhanced reparative effects attributable to chaotic intra- and inter-molecular energy transport to biopolymers in injured soft-tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.