The following acknowledgments section should have been included. ACKNOWLEDGMENTS We thank Paula Fives-Taylor at the University of Vermont for providing the SloC antiserum. In addition, we thank Tim Hunter and coworkers at the Vermont Cancer Center DNA Analysis Facility for their assistance with the analysis of real-time qRT-PCR experiments, Joel Tilley at the University of Vermont for inductively coupled argon plasma analysis, Michele Von Turkovitch at the University of Vermont for preparing the scanning electron micrographs, Dilani Senadheera at the University of Toronto Faculty of Dentistry for assistance with growth curve determination, Gary Nelson for figure preparation, and Frank Spatafora for laboratory assistance.
Metal ion availability in the human oral cavity plays a putative role in Streptococcus mutans virulence gene expression and in appropriate formation of the plaque biofilm. In this report, we present evidence that supports such a role for the DtxR-like SloR metalloregulator (called Dlg in our previous publications) in this oral pathogen. Specifically, the results of gel mobility shift assays revealed the sloABC, sloR, comDE, ropA, sod, and spaP promoters as targets of SloR binding. We confirmed differential expression of these genes in a GMS584 SloR-deficient mutant versus the UA159 wild-type progenitor by real-time semiquantitative reverse transcriptase PCR experiments. The results of additional expression studies support a role for SloR in S. mutans control of glucosyltransferases, glucan binding proteins, and genes relevant to antibiotic resistance. Phenotypic analysis of GMS584 revealed that it forms aberrant biofilms on an abiotic surface, is compromised for genetic competence, and demonstrates heightened incorporation of iron and manganese as well as resistance to oxidative stress compared to the wild type. Taken together, these findings support a role for SloR in S. mutans adherence, biofilm formation, genetic competence, metal ion homeostasis, oxidative stress tolerance, and antibiotic gene regulation, all of which contribute to S. mutans-induced disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.