Substitution of chromosome 13 from Brown Norway BN/SsNHsd/Mcw (BN/Mcw) rats into the Dahl salt-sensitive SS/JrHsd/Mcw (SS/Mcw) rats resulted in substantial reduction of blood pressure salt sensitivity in this consomic rat strain designated SSBN13. In the present study, we attempted to identify genes associated with salt-sensitive hypertension by utilizing a custom, known-gene cDNA microarray to compare the mRNA expression profiles in the renal medulla (a tissue playing a pivotal role in long-term blood pressure regulation) of SS/Mcw and SSBN13 rats on either low-salt (0.4% NaCl) or high-salt (4% NaCl, 2 wk) diets. To increase the reliability of microarray data, we designed a four-way comparison experiment incorporating several levels of replication and developed a conservative yet robust data analysis method. Using this approach, from the 1,751 genes examined (representing more than 80% of all currently known rat genes), we identified 80 as being differentially expressed in at least 1 of the 4 comparisons. Substantial agreements were found between the microarray results and the results predicted on the basis of the four-way comparison as well as the results of Northern blots of 20 randomly selected genes. Analysis of the four-way comparison further indicated that approximately 75% of the 80 differentially expressed genes were likely related to salt-sensitive hypertension. Many of these genes had not previously been recognized to be important in hypertension, whereas several genes/pathways known to be involved in hypertension were confirmed. These results should provide an informative source for designing future functional studies in salt-sensitive hypertension.
Jr. Insights into Dahl salt-sensitive hypertension revealed by temporal patterns of renal medullary gene expression.
Dye switching and biological replication substantially increase the cost and the complexity of cDNA microarray studies. The objective of the present analysis was to quantitatively assess the importance of these procedures to provide a quantitative basis for decision-making in the design of microarray experiments. Taking advantage of the unique characteristics of a published data set, the impact of these procedures on the reliability of microarray results was calculated. Adding a second microarray with dye switching substantially increased the correlation coefficient between observed and predicted ln(ratio) values from 0.38 +/- 0.06 to 0.62 +/- 0.04 (n = 12) and the outlier concordance from 21 +/- 3% to 43 +/- 4%. It also increased the correlation with the entire set of microarrays from 0.60 +/- 0.04 to 0.79 +/- 0.04 and the outlier concordance from 31 +/- 6% to 58 +/- 5% and tended to improve the correlation with Northern blot results. Adding a second microarray to include biological replication also improved the performance of these indices but often to a lesser degree. Inclusion of both procedures in the second microarray substantially improved the consistency with the entire set of microarrays but had minimal effect on the consistency with predicted results. Analysis of another data set generated using a different cDNA labeling method also supported a significant impact of dye switching. In conclusion, both dye switching and biological replication substantially increased the reliability of microarray results, with dye switching likely having even greater benefits. Recommendations regarding the use of these procedures were proposed.
The present study was designed to determine whether nonhypertensive elevations of plasma ANG II would modify the expression of genes involved in renal injury that could influence oxidative stress and extracellular matrix formation in the renal medulla using microarray, Northern, and Western blot techniques. Sprague-Dawley rats were infused intravenously with either ANG II (5 ng · kg−1 · min−1) or vehicle for 7 days ( n = 6/group). Mean arterial pressure averaged 110 ± 0.6 mmHg during the control period and 113 ± 0.4 mmHg after ANG II. The mRNA of 1,751 genes (∼80% of all currently known rat genes) that was differentially expressed (ANG II vs. saline) in renal outer and inner medulla was determined. The results of 12 hybridizations indicated that in response to ANG II, 11 genes were upregulated and 25 were downregulated in the outer medulla, while 11 were upregulated and 13 were downregulated in the inner medulla. These differentially expressed genes, most of which were not known previously to be affected by ANG II in the renal medulla, were found to group into eight physiological pathways known to influence renal injury and kidney function. Particularly, expression of several genes would be expected to increase oxidative stress and interstitial fibrosis in the outer medulla. Western blot analyses confirmed increased expression of transforming growth factor-β1 and collagen type IV proteins in the outer medulla. Results demonstrate that nonhypertensive elevations of plasma ANG II can significantly alter the expression of a variety of genes in the renal outer medulla and suggested the vulnerability of the renal outer medulla to the injurious effect of ANG II.
The present study was designed to test the hypothesis that homocysteine (Hcys) reduces intracellular nitric oxide (NO) concentrations ([NO](i)) and stimulates superoxide (O.) production in the renal arterial endothelium, thereby resulting in endothelial dysfunction. With the use of fluorescence microscopic imaging analysis, a calcium ionophore, A-23187 (2 microM), and bradykinin (2 microM) were found to increase endothelial [NO](i) in freshly dissected lumen-opened small renal arteries loaded with 4,5-diaminofluorescein diacetate (DAF-2DA; 10 microM). Preincubation of the arteries with L-Hcys (20-40 microM) significantly attenuated the increase in endothelial [NO](i). However, L-Hcys had no effect on NO synthase activity in the renal arteries, as measured by the conversion rate of [(3)H]arginine to [(3)H]citrulline, but it concentration dependently decreased DAF-2DA-sensitive fluorescence induced by PAPA-NONOate in the solution, suggesting that L-Hcys reduces endothelial [NO](i) by its scavenging action. Because other thiol compounds such as L-cysteine and glutathione were also found to reduce [NO](i), it seems that decreased NO is not the only mechanism resulting in endothelial dysfunction or arteriosclerosis in hyperhomocysteinemia (hHcys). By analysis of intracellular O. levels using dihydroethidium trapping, we found that only L-Hcys among the thiol compounds studied markedly increased O. levels in the renal endothelium. These results indicate that L-Hcys inhibits the agonist-induced NO increase but stimulates O. production within endothelial cells. These effects of L-Hcys on [NO](i) and [O.] may contribute to endothelial injury associated with hHcys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.