State-of-the-art proteomic analysis has recently undergone a rapid evolution; with more high-throughput analytical instrumentation and informatic tools available, sample preparation is becoming one of the rate-limiting steps in protein characterization workflows. Recently several protocols have appeared in the literature that employ microwave irradiation as a tool for the preparation of biological samples for subsequent mass spectrometric characterization. Techniques for microwave-assisted biocatalyzed reactions (including sample reduction and alkylation, enzymatic and chemical digestion, removal and analysis of posttranslational modifications and characterization of enzymes and protein-interaction sites) are described. This review summarizes the various approaches undertaken, instrumentation employed, and reduction in overall experimental time observed when microwave assistance is applied. #
Biotechnology has recently celebrated 30 years both as a science and as a multi-billion dollar industry. One application of biotechnology is to use human genetic information to discover, develop, manufacture, and commercialize biotherapeutics. Recombinant proteins can be produced in large quantities at high purity. High-throughput proteomic analysis is at the heart of the biotechnology research and development process, and the industry is constantly striving to streamline and automate the analytical processes involved. Microwave-assisted proteomics has recently emerged as a tool for increasing the bio-catalysis of several processes including tryptic digestions lipase selectivities, identification of metal-catalyzed oxidation sites on proteins, identification of protein N- and C-termini and enzyme catalyzed N-linked deglycosylation. Here, we explore the above mentioned methods, and describe our experiences evaluating microwave-technology for other common proteomic protocols including: removal of N-terminal pyroglutamyl for antibody characterization, beta elimination and Michael addition for identification of phosphorylation sites on recombinant proteins and enzyme mediated O-linked deglycosylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.