Bacteria, plants, and algae produce isoprenoids through the methylerythritol phosphate (MEP) pathway, an attractive pathway for antimicrobial drug development as it is present in prokaryotes and some lower eukaryotes but absent from human cells. The first committed step of the MEP pathway is catalyzed by 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR/MEP synthase). MEP pathway genes have been identified in many biothreat agents, including Francisella, Brucella, Bacillus, Burkholderia, and Yersinia. The importance of the MEP pathway to Francisella is demonstrated by the fact that MEP pathway mutations are lethal. We have previously established that fosmidomycin inhibits purified MEP synthase (DXR) from F. tularensis LVS. FR900098, the acetyl derivative of fosmidomycin, was found to inhibit the activity of purified DXR from F. tularensis LVS (IC50 = 230 nM). Fosmidomycin and FR900098 are effective against purified DXR from Mycobacterium tuberculosis as well, but have no effect on whole cells because the compounds are too polar to penetrate the thick cell wall. Fosmidomycin requires the GlpT transporter to enter cells, and this is absent in some pathogens, including M. tuberculosis. In this study, we have identified the GlpT homologs in F. novicida and tested transposon insertion mutants of glpT. We showed that FR900098 also requires GlpT for full activity against F. novicida. Thus, we synthesized several FR900098 prodrugs that have lipophilic groups to facilitate their passage through the bacterial cell wall and bypass the requirement for the GlpT transporter. One compound, that we termed “compound 1,” was found to have GlpT-independent antimicrobial activity. We tested the ability of this best performing prodrug to inhibit F. novicida intracellular infection of eukaryotic cell lines and the caterpillar Galleria mellonella as an in vivo infection model. As a lipophilic GlpT-independent DXR inhibitor, compound 1 has the potential to be a broad-spectrum antibiotic, and should be effective against most MEP-dependent organisms.
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the pivotal step in guanine nucleotide biosynthesis. IMPDH is a target for immunosuppressive, antiviral, and anticancer drugs, but, as of yet, has not been exploited for antimicrobial therapy. We have previously reported potent inhibitors of IMPDH from the protozoan parasite Cryptosporidium parvum (CpIMPDH). Many pathogenic bacteria, including Bacillus anthracis, Staphylococcus aureus, and Listeria monocytogenes, contain IMPDHs that should also be inhibited by these compounds. Herein, we present the structure-activity relationships for the inhibition of B. anthracis IMPDH (BaIMPDH) and antibacterial activity of 140 compounds from five structurally distinct compound series. Many potent inhibitors of BaIMPDH were identified (78% with IC50 ≤ 1 μM). Four compounds had minimum inhibitory concentrations (MIC) of less than 2 μM against B. anthracis Sterne 770. These compounds also displayed antibacterial activity against S. aureus and L. monocytogenes.
We describe the construction of mini-Tn7-based broad-host-range vectors encoding lux genes as bioluminescent reporters. These constructs can be mobilized into the desired host(s) by conjugation for chromosomal mini-Tn7-lux integration and are useful for localization of bacteria during infections or for characterizing regulation of promoters of interest in Gram-negative bacteria. The lux bioluminescent reporter genes are useful for quantifying and characterizing bacterial gene expression or pinpointing the location of bacteria within in vivo infection models (1). Expression of the luciferase genes (luxCDABE) from Photorhabdus luminescens, commonly referred to as the lux reporter, results in readily detectable bioluminescence (2). The light produced by luciferase is emitted at 490 to 500 nm and can be easily detected by several analytical platforms, such as luminometers, film exposure, or digital cameras. In this report, we describe the assembly of mobilizable lux reporter plasmid constructs capable of being transferred to the strain of interest by conjugation to integrate the mini-Tn7-lux elements into the chromosome of numerous Gramnegative bacteria. We provide experimental examples that highlight their utility and offer further suggestions for their application in future studies. Construction of mini-Tn7-lux reporter vectors with oriT for mobilization and a trimethoprim resistance selection marker.Mini-Tn7 vectors have been shown to be useful in many bacteria (3-9) for shuttling constructs to a highly conserved site on the FIG 1 Genetic map of the key features of pUC18T-mini-Tn7T-lux-Tp. pUC18T-mini-Tn7-lux-Tp contains two antibiotic resistance markers: bla (encoding -lactamase) and dhfRIIb (encoding trimethoprim-resistant dihydrofolate reductase). The dhfRIIb marker is located on the transposable element and is used to select for chromosomal integration and can be removed via Flp-mediated recombination between the FRT sites. The P1 promoter (14) drives constitutive expression of the luxCDABE operon. The oriT allows mobilization of this vector into recipient strains by conjugation (11). The map was generated with CLC Workbench 6.
The methylerythritol phosphate (MEP) pathway is essential in most prokaryotes and some lower eukaryotes but absent from human cells, and is a validated target for antimicrobial drug development. The formation of MEP is catalyzed by 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR). MEP pathway genes have been identified in many category A and B biothreat agents, including Francisella tularensis, which causes the zoonosis tularemia. Fosmidomycin (Fos) inhibits purified Francisella DXR. This compound also inhibits the growth of F. tularensis NIH B38, F. novicida and F. tularensis subsp. holarctica LVS bacteria. Related compounds such as FR900098 and the lipophilic prodrug of FR900098 (compound 1) have been developed to improve the bioavailability of these DXR inhibitors. In performing disk-inhibition assays with these compounds, we observed breakthrough colonies of F. novicida in the presence of Fos, suggesting spontaneous development of Fos resistance (FosR). FosR bacteria had decreased sensitivity to both Fos and FR900098. The two most likely targets for the development of mutants would be the DXR enzyme itself or the glycerol-3-phosphate transporter (GlpT) that allows entry of Fos into the bacteria. Sensitivity of FosR F. novicida bacteria to compound 1 was not abated suggesting that spontaneous resistance is not due to mutation of DXR. We thus predicted that the glpT transporter may be mutated leading to this resistant phenotype. Supporting this, transposon insertion mutants at the glpT locus were also found to be resistant to Fos. DNA sequencing of four different spontaneous FosR colonies demonstrated a variety of deletions in the glpT coding region. The overall frequency of FosR mutations in F. novicida was determined to be 6.3 × 10−8. Thus we conclude that one mechanism of resistance of F. novicida to Fos is caused by mutations in GlpT. This is the first description of spontaneous mutations in Francisella leading to FosR.
bWe describe a mini-Tn7-based broad-host-range expression cassette for arabinose-inducible gene expression from the P BAD promoter. This delivery vector, pTJ1, can integrate a single copy of a gene into the chromosome of Gram-negative bacteria for diverse genetic applications, of which several are discussed, using Pseudomonas aeruginosa as the model host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.