Heterotopic ossification (HO), or bone formation in soft tissues, is often the result of traumatic injury. Much evidence has linked the release of BMPs (bone morphogenetic proteins) upon injury to this process. HO was once thought to be a rare occurrence, but recent statistics from the military suggest that as many as 60% of traumatic injuries, resulting from bomb blasts, have associated HO. In this study, we attempt to define the role of peripheral nerves in this process. Since BMP2 has been shown previously to induce release of the neuroinflammatory molecules, substance P (SP) and calcitonin gene related peptide (CGRP), from peripheral, sensory neurons, we examined this process in vivo. SP and CGRP are rapidly expressed upon delivery of BMP2 and remain elevated throughout bone formation. In animals lacking functional sensory neurons (TRPV1−/−), BMP2-mediated increases in SP and CGRP were suppressed as compared to the normal animals, and HO was dramatically inhibited in these deficient mice, suggesting that neuroinflammation plays a functional role. Mast cells, known to be recruited by SP and CGRP, were elevated after BMP2 induction. These mast cells were localized to the nerve structures and underwent degranulation. When degranulation was inhibited using cromolyn, HO was again reduced significantly. Immunohistochemical analysis revealed nerves expressing the stem cell markers nanog and Klf4, as well as the osteoblast marker osterix, after BMP2 induction, in mice treated with cromolyn. The data collectively suggest that BMP2 can act directly on sensory neurons to induce neurogenic inflammation, resulting in nerve remodeling and the migration/release of osteogenic and other stem cells from the nerve. Further, blocking this process significantly reduces HO, suggesting that the stem cell population contributes to bone formation.
Differentiation of myocytes is impaired in patients with myotonic dystrophy type 1, DM1. CUG repeat binding protein, CUGBP1, is a key regulator of translation of proteins that are involved in muscle development and differentiation. In this paper, we present evidence that RNA-binding activity of CUGBP1 and its interactions with initiation translation complex eIF2 are differentially regulated during myogenesis by specific phosphorylation and that this regulation is altered in DM1. In normal myoblasts, Akt kinase phosphorylates CUGBP1 at Ser28 and increases interactions of CUGBP1 with cyclin D1 mRNA. During differentiation, CUGBP1 is phosphorylated by cyclinD3-cdk4/6 at Ser302, which increases CUGBP1 binding with p21 and C/EBPbeta mRNAs. While cyclin D3 and cdk4 are elevated in normal myotubes; DM1 differentiating cells do not increase these proteins. In normal myotubes, CUGBP1 interacts with cyclin D3/cdk4/6 and eIF2; however, interactions of CUGBP1 with eIF2 are reduced in DM1 differentiating cells and correlate with impaired muscle differentiation in DM1. Ectopic expression of cyclin D3 in DM1 cells increases the CUGBP1-eIF2 complex, corrects expression of differentiation markers, myogenin and desmin, and enhances fusion of DM1 myoblasts. Thus, normalization of cyclin D3 might be a therapeutic approach to correct differentiation of skeletal muscle in DM1 patients.
The RNA-binding protein CUGBP1 regulates translation of proteins in a variety of biological processes. In this study, we show that aging liver increases CUGBP1 translational activities by induction of a high molecular weight protein-protein complex of CUGBP1. The complex contains CUGBP1, subunits ␣, , and ␥ of the initiation translation factor eIF2, and four proteins of the endoplasmic reticulum, eR90, CRT, eR60, and Grp78. The induction of the CUGBP1-eIF2 complex in old livers is associated with the elevation of protein levels of CUGBP1 and with the hyper-phosphorylation of CUGBP1 by a cyclin D3-cdk4 kinase, activity of which is increased with age. We have examined the role of the elevation of CUGBP1 and the role of cyclin D3-cdk4-mediated phosphorylation of CUGBP1 in the formation of the CUGBP1-eIF2 complex by using CUGBP1 transgenic mice and young animals expressing high levels of cyclin D3 after injection with cyclin D3 plasmid. These studies showed that both the increased levels of CUGBP1 and cdk4-mediated hyper-phosphorylation of CUGBP1 are involved in the age-associated induction of the CUGBP1-eIF2 complex. The CUGBP1-eIF2 complex is bound to C/EBP mRNA in the liver of old animals, and this binding correlates with the increased amounts of liverenriched activator protein and liver-enriched inhibitory protein. Consistent with these observations, the purified CUGBP1-eIF2 complex binds to the 5 region of C/EBP mRNA and significantly increases translation of the three isoforms of C/EBP in a cell-free translation system, in cultured cells, and in the liver. Thus, these studies demonstrated that age-mediated induction of the CUGBP1-eIF2 complex changes translation of C/EBP in old livers.
Myotonic dystrophy 2 (DM2) is a multisystem skeletal muscle disease caused by an expansion of tetranucleotide CCTG repeats, the transcription of which results in the accumulation of untranslated CCUG RNA. In this study, we report that CCUG repeats both bind to and misregulate the biological functions of cytoplasmic multiprotein complexes. Two CCUG-interacting complexes were subsequently purified and analyzed. A major component of one of the complexes was found to be the 20S catalytic core complex of the proteasome. The second complex was found to contain CUG triplet repeat RNA-binding protein 1 (CUGBP1) and the translation initiation factor eIF2. Consistent with the biological functions of the 20S proteasome and the CUGBP1-eIF2 complexes, the stability of short-lived proteins and the levels of the translational targets of CUGBP1 were shown to be elevated in DM2 myoblasts. We found that the overexpression of CCUG repeats in human myoblasts from unaffected patients, in C2C12 myoblasts, and in a DM2 mouse model alters protein translation and degradation, similar to the alterations observed in DM2 patients. Taken together, these findings show that RNA CCUG repeats misregulate protein turnover on both the levels of translation and proteasome-mediated protein degradation.
Epigenetic control of liver proliferation involves cooperation between transcription factors and chromatin-remodeling proteins. In this work, we found that the levels of HDAC1 (histone deacetylase 1) are increased in quiescent livers of old mice. The elevation of HDAC1 in liver is mediated by the RNA-binding protein CUGBP1. We found that the age-associated CUGBP1-eIF2 complex binds to the 5 region of HDAC1 mRNA and increases translation of HDAC1 in the liver. Further analyses showed that CUGBP1 also increases expression of HDAC1 in cultured cells, in the livers of CUGBP1 transgenic mice, and in the livers of mice injected with cyclin D3, which enhances the formation of the CUGBP1-eIF2 complex. In livers of old mice, HDAC1 interacts with the transcription factor C/EBP␣ and is recruited by this protein to E2F-dependent promoters as a component of high M r C/EBP␣-Brm complexes. The recruitment of HDAC1 to c-Myc and FoxM1B promoters leads to deacetylation of histone H3 at Lys-9 on these E2F-dependent promoters. We show that HDAC1 is an important mediator of growth-inhibitory activity of C/EBP␣ and that small interfering RNA-mediated inhibition of HDAC1 reduces the ability of C/EBP␣ to inhibit cell proliferation. In addition, we have found that both elevation of HDAC1 and interaction of C/EBP␣ with HDAC1 are controlled by cyclin D3-dependent mechanisms. Treatment of old mice with growth hormone, which reduces cyclin D3 levels, leads to the reduction of the CUGBP1-eIF2 complex, normalization of HDAC1 levels, and inhibition of interactions of HDAC1 with C/EBP␣-Brm complexes. Thus, our data demonstrate that translational elevation of HDAC1 in livers of old mice is involved in the assembly of high M r protein-protein complexes that inhibit liver proliferation.Although the liver is a quiescent tissue, it is able to completely regenerate itself in response to injury and after partial hepatectomy. It has been shown that aging significantly reduces regenerative capacities of the liver and proliferative response after partial hepatectomy (1-3). The first fundamental work was performed by Bucher et al.(1) in 1964 and showed that old animals have a delayed and reduced peak of DNA synthesis. This phenomenon was later confirmed by a number of publications from other groups (2-5). Despite intensive work, very little is known about biochemical pathways by which aging inhibits liver proliferation. Recent studies revealed that expression and activities of two transcription factors, C/EBP␣ and FoxM1B, are altered in livers of old mice (4 -7). The C/EBP family member C/EBP␣ is expressed at high levels in the liver and is involved in the regulation of liver growth and differentiation (8 -10). C/EBP␣ inhibits liver proliferation in young mice through the interactions with Cdk2 and p21, leading to the inhibition of Cdk2 kinase activity (11-13). In old livers, C/EBP␣ is recruited to Brm complexes to repress E2F targets through the occupation of E2F-dependent promoters (5, 14). FoxM1B is not detectable in quiescent livers but is elevated af...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.