Background Falls are a common and serious health issue facing the global population, causing an estimated 646,000 deaths per year globally. Wearable devices typically combine accelerometers, gyroscopes and even barometers; using the data collected and inputting this into an algorithm that decides whether a fall has occurred. The purpose of this umbrella review was to provide a comprehensive overview of the systematic reviews on the effectiveness of wearable electronic devices for falls detection in adults. Methods MEDLINE, Embase, Cochrane Database of Systematic Reviews (CDSR), and CINAHL, were searched from their inceptions until April 2019 for systematic reviews that assessed the accuracy of wearable technology in the detection of falls. Results Seven systematic reviews were included in this review. Due to heterogeneity between the included systematic reviews in their methods and their reporting of results, a meta-analysis could not be performed. Most devices tested used accelerometers, often in combination with gyroscopes. Three systematic reviews reported an average sensitivity of 93.1% or greater and an average specificity of 86.4% or greater for the detection of falls. Placing sensors on the trunk, foot or leg appears to provide the highest accuracy for falls detection, with multiple sensors increasing the accuracy, specificity, and sensitivity of these devices. Conclusions This review demonstrated that wearable device technology offers a low-cost and accurate way to effectively detect falls and summon for help. There are significant differences in the effectiveness of these devices depending on the type of device and its placement. Further high-quality research is needed to confirm the accuracy of these devices in frail older people in real-world settings.
Background The World Health Organization recommends exclusive breastfeeding for the first 6 months of life; however, UK breastfeeding rates are some of the lowest worldwide. As such, various interventions have been trialled, aiming to increase breastfeeding rates. Aims To evaluate the effectiveness of interventions to increase breastfeeding rates in the UK and determine the features of successful interventions. Methods A literature search was performed, using four databases. The results were refined by applying inclusion and exclusion criteria. Two additional articles were recognised by scanning the references sections of identified studies, resulting in 12 articles for review. Findings Support-based interventions had predominantly insignificant effects upon breastfeeding rates. Incentives were associated with increases in rates, while combined interventions had mixed success. The interventions were well received by mothers and clinicians and may help to normalise breastfeeding. Conclusions Future interventions should provide targeted, personalised support to overcome breastfeeding difficulties, and reward mothers for their efforts.
Background: Falls are a common and serious health issue facing the global population, causing an estimated 646,000 deaths per year globally. Wearable devices typically combine accelerometers, gyroscopes and even barometers; using the data collected and inputting this into an algorithm that decides whether a fall has occurred. The purpose of this umbrella review was to provide a comprehensive overview of the systematic reviews on the effectiveness of wearable electronic devices for falls detection in adults.Methods: MEDLINE, Embase, Cochrane Database of Systematic Reviews (CDSR), and CINAHL, were searched from their inceptions until April 2019 for systematic reviews that assessed the accuracy of wearable technology in the detection of falls.Results: Seven systematic reviews were included in this review. Due to heterogeneity between the included systematic reviews in their methods and their reporting of results, a meta-analysis could not be performed. Most devices tested used accelerometers, often in combination with gyroscopes. Three systematic reviews reported an average sensitivity of 93.1% or greater and an average specificity of 86.4% or greater for the detection of falls. Placing sensors on the trunk, foot or leg appears to provide the highest accuracy for falls detection, with multiple sensors increasing the accuracy, specificity, and sensitivity of these devices. Conclusions: This review demonstrated that wearable device technology offers a low-cost and accurate way to effectively detect falls and summon for help. There are significant differences in the effectiveness of these devices depending on the type of device and its placement. Further high-quality research is needed to confirm the accuracy of these devices in frail older people in real-world settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.