Trophic cascades have been documented in a diversity of ecological systems and can be important in determining biomass distribution within a community. To date, the literature on trophic cascades has focused on whether and in which systems cascades occur. Many biological (e.g., productivity : biomass ratios) and methodological (e.g., experiment size or duration) factors vary with the ecosystem in which data were collected, but ecosystem type, per se, does not provide mechanistic insights into factors controlling cascade strength.Here, we tested various hypotheses about why trophic cascades occur and what determines their magnitude using data from 114 studies that measured the indirect trophic effects of predators on plant community biomass in seven aquatic and terrestrial ecosystems. Using meta-analysis, we examined the relationship between the indirect effect of predator manipulation on plants and 18 biological and methodological factors quantified from these studies. We found, in contrast to predictions, that high system productivity and low species diversity do not consistently generate larger trophic cascades. A combination of herbivore and predator metabolic factors and predator taxonomy (vertebrate vs. invertebrate) explained 31% of the variation in cascade strength among all 114 studies. Within systems, 18% of the variation in cascade strength was explained with similar predator and herbivore characteristics. Within and across all systems, the strongest cascades occurred in association with invertebrate herbivores and endothermic vertebrate predators. These associations may result from a combination of true biological differences among species with different physiological requirements and bias among organisms studied in different systems. Thus, although cascade strength can be described by biological characteristics of predators and herbivores, future research on indirect trophic effects must further examine biological and methodological differences among studies and systems.
Abstract. Invasion by exotic species is a major threat to global diversity. The invasion of native perennial grasslands in California by annual species from the southern Mediterranean region is one of the most dramatic invasions worldwide. As a result of this invasion, native species are often restricted to low-fertility, marginal habitat. An understanding of the mechanisms that prevent the recolonization of the more fertile sites by native species is critical to determining the prospects for conservation and restoration of the native flora. We present the results of a five-year experiment in which we used seeding, burning, and mowing treatments to investigate the mechanisms that constrain native annuals to the marginal habitat of a Californian serpentine grassland. The abundance and richness of native species declined with increasing soil fertility, and there was no effect of burning or mowing on native abundance or richness in the absence of seeding. We found that native annual forbs were strongly seed limited; a single seeding increased abundance of native forbs even in the presence of high densities of exotic species, and this effect was generally discernable after four years. These results suggest that current levels of dominance by exotic species are not simply the result of direct competitive interactions, and that seeding of native species is necessary and may be sufficient to create viable populations of native annual species in areas that are currently dominated by exotic species.
Since its founding in 1993 the International Long-term Ecological Research Network (ILTER) has gone through pronounced development phases. The current network comprises 44 active member LTER networks representing 700 LTER Sites and ~80 LTSER Platforms across all continents, active in the fields of ecosystem, critical zone and socio-ecological research. The critical challenges and most important achievements of the initial phase have now become state-of-the-art in networking for excellent science. At the same time increasing integration, accelerating technology, networking of resources and a strong pull for more socially relevant scientific information have been modifying the mission and goals of ILTER. This article provides a critical review of ILTER's mission, goals, development and impacts. Major characteristics, tools, services, partnerships and selected examples of relative strengths relevant for advancing ILTER are presented. We elaborate on the tradeoffs between the needs of the scientific community and stakeholder expectations. The embedding of ILTER in an increasingly collaborative landscape of global environmental observation and ecological research networks and infrastructures is also reflected by developments of pioneering regional and national LTER networks such as SAEON in South Africa, CERN/CEOBEX in China, TERN in Australia or eLTER RI in Europe. The primary role of ILTER is currently seen as a mechanism to investigate ecosystem structure, function, and services in response to a wide range of environmental forcings using long-term, place-based research. We suggest four main fields of activities and advancements for the next decade through development/delivery of a: (1) Global multi-disciplinary community of researchers and research institutes; (2) Strategic global framework and strong partnerships in ecosystem observation and research; (3) Global Research Infrastructure (GRI); and (4) a scientific knowledge factory for societally relevant information on sustainable use of natural resources.
Humans dominate many important Earth system processes including the nitrogen (N) cycle. Atmospheric N deposition affects fundamental processes such as carbon cycling, climate regulation, and biodiversity, and could result in changes to fundamental Earth system processes such as primary production. Both modelling and experimentation have suggested a role for anthropogenically altered N deposition in increasing productivity, nevertheless, current understanding of the relative strength of N deposition with respect to other controls on production such as edaphic conditions and climate is limited. Here we use an international multiscale data set to show that atmospheric N deposition is positively correlated to aboveground net primary production (ANPP) observed at the 1-m 2 level across a wide range of herbaceous ecosystems. N deposition was a better predictor than climatic drivers and local soil conditions, explaining 16% of observed variation in ANPP globally with an increase of 1 kg NÁha À1 Áyr À1 increasing ANPP by 3%. Soil pH explained 8% of observed variation in ANPP while climatic drivers showed no significant relationship. Our results illustrate that the incorporation of global N deposition patterns in Earth system models are likely to substantially improve estimates of primary production in herbaceous systems. In herbaceous systems across the world, humans appear to be partially driving local ANPP through impacts on the N cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.