SummaryBackgroundEnteropathogen infections in early childhood not only cause diarrhoea but contribute to poor growth. We used molecular diagnostics to assess whether particular enteropathogens were associated with linear growth across seven low-resource settings.MethodsWe used quantitative PCR to detect 29 enteropathogens in diarrhoeal and non-diarrhoeal stools collected from children in the first 2 years of life obtained during the Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) multisite cohort study. Length was measured monthly. We estimated associations between aetiology-specific diarrhoea and subclinical enteropathogen infection and quantity and attained length in 3 month intervals, at age 2 and 5 years, and used a longitudinal model to account for temporality and time-dependent confounding.FindingsAmong 1469 children who completed 2 year follow-up, 35 622 stool samples were tested and yielded valid results. Diarrhoeal episodes attributed to bacteria and parasites, but not viruses, were associated with small decreases in length after 3 months and at age 2 years. Substantial decrements in length at 2 years were associated with subclinical, non-diarrhoeal, infection with Shigella (length-for-age Z score [LAZ] reduction −0·14, 95% CI −0·27 to −0·01), enteroaggregative Escherichia coli (−0·21, −0·37 to −0·05), Campylobacter (−0·17, −0·32 to −0·01), and Giardia (−0·17, −0·30 to −0·05). Norovirus, Cryptosporidium, typical enteropathogenic E coli, and Enterocytozoon bieneusi were also associated with small decrements in LAZ. Shigella and E bieneusi were associated with the largest decreases in LAZ per log increase in quantity per g of stool (−0·13 LAZ, 95% CI −0·22 to −0·03 for Shigella; −0·14, −0·26 to −0·02 for E bieneusi). Based on these models, interventions that successfully decrease exposure to Shigella, enteroaggregative E coli, Campylobacter, and Giardia could increase mean length of children by 0·12–0·37 LAZ (0·4–1·2 cm) at the MAL-ED sites.InterpretationSubclinical infection and quantity of pathogens, particularly Shigella, enteroaggregative E coli, Campylobacter, and Giardia, had a substantial negative association with linear growth, which was sustained during the first 2 years of life, and in some cases, to 5 years. Successfully reducing exposure to certain pathogens might reduce global stunting.FundingBill & Melinda Gates Foundation.
SummaryBackgroundOptimum management of childhood diarrhoea in low-resource settings has been hampered by insufficient data on aetiology, burden, and associated clinical characteristics. We used quantitative diagnostic methods to reassess and refine estimates of diarrhoea aetiology from the Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) cohort study.MethodsWe re-analysed stool specimens from the multisite MAL-ED cohort study of children aged 0–2 years done at eight locations (Dhaka, Bangladesh; Vellore, India; Bhaktapur, Nepal; Naushero Feroze, Pakistan; Venda, South Africa; Haydom, Tanzania; Fortaleza, Brazil; and Loreto, Peru), which included active surveillance for diarrhoea and routine non-diarrhoeal stool collection. We used quantitative PCR to test for 29 enteropathogens, calculated population-level pathogen-specific attributable burdens, derived stringent quantitative cutoffs to identify aetiology for individual episodes, and created aetiology prediction scores using clinical characteristics.FindingsWe analysed 6625 diarrhoeal and 30 968 non-diarrhoeal surveillance stools from 1715 children. Overall, 64·9% of diarrhoea episodes (95% CI 62·6–71·2) could be attributed to an aetiology by quantitative PCR compared with 32·8% (30·8–38·7) using the original study microbiology. Viral diarrhoea (36·4% of overall incidence, 95% CI 33·6–39·5) was more common than bacterial (25·0%, 23·4–28·4) and parasitic diarrhoea (3·5%, 3·0–5·2). Ten pathogens accounted for 95·7% of attributable diarrhoea: Shigella (26·1 attributable episodes per 100 child-years, 95% CI 23·8–29·9), sapovirus (22·8, 18·9–27·5), rotavirus (20·7, 18·8–23·0), adenovirus 40/41 (19·0, 16·8–23·0), enterotoxigenic Escherichia coli (18·8, 16·5–23·8), norovirus (15·4, 13·5–20·1), astrovirus (15·0, 12·0–19·5), Campylobacter jejuni or C coli (12·1, 8·5–17·2), Cryptosporidium (5·8, 4·3–8·3), and typical enteropathogenic E coli (5·4, 2·8–9·3). 86·2% of the attributable incidence for Shigella was non-dysenteric. A prediction score for shigellosis was more accurate (sensitivity 50·4% [95% CI 46·7–54·1], specificity 84·0% [83·0–84·9]) than current guidelines, which recommend treatment only of bloody diarrhoea to cover Shigella (sensitivity 14·5% [95% CI 12·1–17·3], specificity 96·5% [96·0–97·0]).InterpretationQuantitative molecular diagnostics improved estimates of pathogen-specific burdens of childhood diarrhoea in the community setting. Viral causes predominated, including a substantial burden of sapovirus; however, Shigella had the highest overall burden with a high incidence in the second year of life. These data could improve the management of diarrhoea in these low-resource settings.FundingBill & Melinda Gates Foundation.
ObjectiveTo describe the frequency and factors associated with antibiotic use in early childhood, and estimate the proportion of diarrhoea and respiratory illnesses episodes treated with antibiotics.MethodsBetween 2009 and 2014, we followed 2134 children from eight sites in Bangladesh, Brazil, India, Nepal, Pakistan, Peru, South Africa and the United Republic of Tanzania, enrolled in the MAL-ED birth cohort study. We documented all antibiotic use from mothers’ reports at twice-weekly visits over the children’s first two years of life. We estimated the incidence of antibiotic use and the associations of antibiotic use with child and household characteristics. We described treatment patterns for diarrhoea and respiratory illnesses, and identified factors associated with treatment and antibiotic class.FindingsOver 1 346 388 total days of observation, 16 913 courses of antibiotics were recorded (an incidence of 4.9 courses per child per year), with the highest use in South Asia. Antibiotic treatment was given for 375/499 (75.2%) episodes of bloody diarrhoea and for 4274/9661 (44.2%) episodes of diarrhoea without bloody stools. Antibiotics were used in 2384/3943 (60.5%) episodes of fieldworker-confirmed acute lower respiratory tract illness as well as in 6608/16742 (39.5%) episodes of upper respiratory illness. Penicillins were used most frequently for respiratory illness, while antibiotic classes for diarrhoea treatment varied within and between sites.ConclusionRepeated antibiotic exposure was common early in life, and treatment of non-bloody diarrhoea and non-specific respiratory illnesses was not consistent with international recommendations. Rational antibiotic use programmes may have the most impact in South Asia, where antibiotic use was highest.
In a multisite birth cohort study, we document a high burden of Campylobacter infection using enzyme immunoassay, demonstrate an association between Campylobacter and linear growth shortfalls and both increased intestinal permeability and intestinal and systemic inflammation, and identify potential interventions.
Objective To assess the role of environmental contamination in the transmission of multidrug-resistant bacteria to healthcare workers’ clothing. Design Prospective cohort. Setting Six intensive care units at a tertiary care hospital. Subjects Healthcare workers including registered nurses, patient care technicians, respiratory therapists, occupational/physical therapists, and physicians. Interventions None. Measurements and Main Results One hundred twenty of 585 (20.5%) healthcare worker/patient interactions resulted in contamination of healthcare workers’ gloves or gowns. Multidrug-resistant Acinetobacter baumannii contamination occurred most frequently, 55 of 167 observations (32.9%; 95% confidence interval [CI] 25.8% to 40.0%), followed by multidrug-resistant Pseudomonas aeruginosa, 15 of 86 (17.4%; 95% CI 9.4% to 25.4%), vancomycin-resistant Enterococcus, 25 of 180 (13.9%, 95% CI 8.9, 18.9%) and methicillin-resistant Staphylococcus aureus, 21 of 152 (13.8%; 95% CI 8.3% to 19.2%). Independent risk factors associated with healthcare worker contamination with multidrug-resistant bacteria were positive environmental cultures (odds ratio [OR] 4.2; 95% CI 2.7–6.5), duration in room for >5 mins (OR 2.0; 95% CI 1.2–3.4), performing physical examinations (OR 1.7; 95% CI 1.1–2.8), and contact with the ventilator (OR 1.8; 95% CI, 1.1–2.8). Pulsed field gel electrophoresis determined that 91% of healthcare worker isolates were related to an environmental or patient isolate. Conclusions The contamination of healthcare workers’ protective clothing during routine care of patients with multidrug- resistant organisms is most frequent with A. baumannii. Environmental contamination was the major determinant of transmission to healthcare workers’ gloves or gowns. Compliance with contact precautions and more aggressive environmental cleaning may decrease transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.