Bacterial cell wall peptidoglycan is essential, maintaining both cellular integrity and morphology, in the face of internal turgor pressure. Peptidoglycan synthesis is important, as it is targeted by cell wall antibiotics, including methicillin and vancomycin. Here, we have used the major human pathogen Staphylococcus aureus to elucidate both the cell wall dynamic processes essential for growth (life) and the bactericidal effects of cell wall antibiotics (death) based on the principle of coordinated peptidoglycan synthesis and hydrolysis. The death of S. aureus due to depletion of the essential, two-component and positive regulatory system for peptidoglycan hydrolase activity (WalKR) is prevented by addition of otherwise bactericidal cell wall antibiotics, resulting in stasis. In contrast, cell wall antibiotics kill via the activity of peptidoglycan hydrolases in the absence of concomitant synthesis. Both methicillin and vancomycin treatment lead to the appearance of perforating holes throughout the cell wall due to peptidoglycan hydrolases. Methicillin alone also results in plasmolysis and misshapen septa with the involvement of the major peptidoglycan hydrolase Atl, a process that is inhibited by vancomycin. The bactericidal effect of vancomycin involves the peptidoglycan hydrolase SagB. In the presence of cell wall antibiotics, the inhibition of peptidoglycan hydrolase activity using the inhibitor complestatin results in reduced killing, while, conversely, the deregulation of hydrolase activity via loss of wall teichoic acids increases the death rate. For S. aureus, the independent regulation of cell wall synthesis and hydrolysis can lead to cell growth, death, or stasis, with implications for the development of new control regimes for this important pathogen.
BackgroundGlycopeptidolipids (GPLs) are among the major free glycolipid components of the outer membrane of several saprophytic and clinically-relevant Mycobacterium species. The architecture of GPLs is based on a constant tripeptide-amino alcohol core of nonribosomal peptide synthetase origin that is N-acylated with a 3-hydroxy/methoxy acyl chain synthesized by a polyketide synthase and further decorated with variable glycosylation patterns built from methylated and acetylated sugars. GPLs have been implicated in many aspects of mycobacterial biology, thus highlighting the significance of gaining an understanding of their biosynthesis. Our bioinformatics analysis revealed that every GPL biosynthetic gene cluster known to date contains a gene (referred herein to as gplH) encoding a member of the MbtH-like protein family. Herein, we sought to conclusively establish whether gplH was required for GPL production.ResultsDeletion of gplH, a gene clustered with nonribosomal peptide synthetase-encoding genes in the GPL biosynthetic gene cluster of Mycobacterium smegmatis, produced a GPL deficient mutant. Transformation of this mutant with a plasmid expressing gplH restored GPL production. Complementation was also achieved by plasmid-based constitutive expression of mbtH, a paralog of gplH found in the biosynthetic gene cluster for production of the siderophore mycobactin of M. smegmatis. Further characterization of the gplH mutant indicated that it also displayed atypical colony morphology, lack of sliding motility, altered capacity for biofilm formation, and increased drug susceptibility.ConclusionsHerein, we provide evidence formally establishing that gplH is essential for GPL production in M. smegmatis. Inactivation of gplH also leads to a pleiotropic phenotype likely to arise from alterations in the cell envelope due to the lack of GPLs. While genes encoding MbtH-like proteins have been shown to be needed for production of siderophores and antibiotics, our study presents the first case of one such gene proven to be required for production of a cell wall component. Furthermore, our results provide the first example of a mbtH-like gene with confirmed functional role in a member of the Mycobacterium genus. Altogether, our findings demonstrate a critical role of gplH in mycobacterial biology and advance our understanding of the genetic requirements for the biosynthesis of an important group of constituents of the mycobacterial outer membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.