The polyene antibiotic amphotericin B (AmB) is known to form two types of ionic channels across sterol-containing liposomes, depending on its concentration and time after mixing (Cohen, 1992). In the present study, it is shown that AmB only kills unicellular Leishmania promastigotes (LPs) when aqueous pores permeable to small cations and anions are formed. Changes of membrane potential across ergosterol-containing liposomes and LPs were followed by fluorescence changes of 3,3' dipropylthiadicarbocyanine (DiSC3(5)). In KCl-loaded liposomes suspended in an iso-osmotic sucrose solution, low AmB concentrations (=0.1 microM) induced a polarization potential, indicating K+ leakage, but no movement of cations and anions was allowed until AmB concentrations greater than 0.1 microM were added. In agreement with these data, it was found that AmB altered the negative membrane potential held across LPs in a manner consistent with the differential cation/anion selectivity exhibited by the channels formed in liposomes. Thus, LPs suspended in an iso-osmotic sucrose solution did not exhibit any AmB-induced membrane depolarization effect brought about by efflux of anions until 0.1 microM or higher AmB concentrations were added. By contrast, LPs suspended in an iso-osmotic NaCl solution and exposed to 0.05 microM AmB exhibited a nearly total collapse of the negative membrane potential, indicating Na+ entry into the cells. The concentration dependence of the AmB-induced permeability to different salts was also measured across vesicles derived from the plasma membrane of leishmanias (LMVs), by using a rapid mixing technique. At concentrations above 0.1 microM, AmB induced the formation of aqueous pores across LMVs with a positive cooperativity, yielding Hill coefficients between 2 to 3. Measured anion selectivity across such aqueous pores followed the sequence: SCN > NO3 > Cl > I > Br > acetate (SO2-4 being impermeable). Cell killing by AmB was followed by fluorescence changes of the DNA-binding compound ethidium bromide (EB). At low concentrations (=0.1 microM), AmB was found to be nonlethal against LPs but, above this concentration, leishmanias were rapidly killed. The rate and extent of such an effect were found to be dependent on the type of cation and anion present in the external aqueous solution. For both NH+4 and Na+ salts, the measured rank order of AmB cell killing followed the same sequence that was determined for AmB-induced salt permeation across LMVs. Further, replacement of either extracellular Na+ by choline or Cl- by SO2-4, or its partial substitution by sucrose, in iso-osmotic conditions, led to a complete inhibition of the killing effect exerted by otherwise lethal AmB concentrations. Finally, it was shown that tetraethylammonium (TEA+), an organic cation that is known to block AmB-induced salt permeation across LMVs was able to retard the time lag observed for EB incorporation across LPs, indicating that this parameter can be taken to represent the time taken for salt accumulation inside the parasites. The pr...
Eukaryotic cells respond to DNA damage by activating damage checkpoint pathways, which arrest cell cycle progression and induce gene expression. We isolated a full-length cDNA encoding a 49-kDa protein from Leishmania major, which exhibited significant deduced amino acid sequence homology with the annotated Leishmania sp. DNA damage-inducible (Ddi1-like) protein, as well as with the Ddi1 protein from Saccharomyces cerevisiae. In contrast to the previously described Ddi1 protein, the protein from L. major displays three domains: (1) an NH2-terminal ubiquitin like; (2) a COOH terminal ubiquitinassociated; (3) a retroviral aspartyl proteinase, containing the typical D[S/T]G signature. The function of the L. major Ddi1-like recombinant protein was investigated after expression in baculovirus/insect cells and biochemical analysis, revealing preferential substrate selectivity for aspartyl proteinase A 2 family substrates, with optimal activity in acidic conditions. The proteolytic activity was inhibited by aspartyl proteinase inhibitors. Molecular modeling of the retroviral domain of the Ddi1-like Leishmania protein revealed a dimer structure that contained a double AspSer-Gly-Ala amino acid sequence motif, in an almost identical geometry to the exhibited by the homologous retroviral aspartyl protease domain of yeast Ddi1 protein. Our results indicate that the isolated Ddi1-like protein is a functional aspartyl proteinase in L. major, opening possibility to be considered as a potential target for novel antiparasitic drugs.
The polyene antibiotic amphotericin B (AmB) is known to form aqueous pores in lipid membranes and biological membranes. Here, membrane potential and ion permeability measurements were used to demonstrate that AmB can form two types of selective ion channels in human erythrocytes, differing in their interaction with cholesterol. We show that AmB induced a cation efflux (negative membrane polarization) across cholesterol-containing liposomes and erythrocytes at low concentrations (< or =1.0 x 10(-6) M), but a sharp reversal of such polarization was observed at concentrations greater than 1.0 x 10(-6) M AmB, an indication that aqueous pores are formed. Cation-selective AmB channels are also formed across sterol-free liposomes, but aqueous pores are only formed at AmB concentrations 10 times greater. The effect of temperature on the AmB-mediated K+ efflux across erythrocytes revealed that the energies of activation for channel formation are negative and positive at AmB concentrations that lead predominantly to the formation of cation-selective channels and aqueous pores, respectively. These findings support the conclusion that the two types of AmB channels formed in human erythrocytes differ in their interactions with cholesterol and other membrane components. In effect, a membrane lipid reorganization, as induced by incubation of erythrocytes with tetrathionate, a cross-linking agent of the lipid raft-associated protein spectrin, led to differential changes in the activation parameters for the formation of both types of channels, reflecting the different lipid environments in which such structures are formed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.