Cytokines are secreted proteins that regulate important cellular responses such as proliferation and differentiation. Key events in cytokine signal transduction are well defined: cytokines induce receptor aggregation, leading to activation of members of the JAK family of cytoplasmic tyrosine kinases. In turn, members of the STAT family of transcription factors are phosphorylated, dimerize and increase the transcription of genes with STAT recognition sites in their promoters. Less is known of how cytokine signal transduction is switched off. We have cloned a complementary DNA encoding a protein SOCS-1, containing an SH2-domain, by its ability to inhibit the macrophage differentiation of M1 cells in response to interleukin-6. Expression of SOCS-1 inhibited both interleukin-6-induced receptor phosphorylation and STAT activation. We have also cloned two relatives of SOCS-1, named SOCS-2 and SOCS-3, which together with the previously described CIS form a new family of proteins. Transcription of all four SOCS genes is increased rapidly in response to interleukin-6, in vitro and in vivo, suggesting they may act in a classic negative feedback loop to regulate cytokine signal transduction.
The four members of the recently identified suppressor of cytokines signaling family (SOCS-1, SOCS-2, SOCS-3, and CIS, where CIS is cytokine-inducible SH2-containing protein) appear, by various means, to negatively regulate cytokine signal transduction. Structurally, the SOCS proteins are composed of an N-terminal region of variable length and amino acid composition, a central SH2 domain, and a previously unrecognized C-terminal motif that we have called the SOCS box. By using the SOCS box amino acid sequence consensus, we have searched DNA databases and have identified a further 16 proteins that contain this motif. These proteins fall into five classes based on the protein motifs found N-terminal of the SOCS box. In addition to four new SOCS proteins (SOCS-4 to SOCS-7) containing an SH2 domain and a SOCS box, we describe three new families of proteins that contain either WD-40 repeats (WSB-1 and -2), SPRY domains (SSB-1 to -3) or ankyrin repeats (ASB-1 to -3) N-terminal of the SOCS box. In addition, we show that a class of small GTPases also contains a SOCS box. The expression of representative members of each class of proteins differs markedly, as does the regulation of expression by cytokines. The function of the WSB, SSB, and ASB protein families remains to be determined.Cytokines act by binding to and inducing dimerization of members of the hemopoietin receptor family expressed on the surface of responsive cells (1). Although the cytoplasmic proteins that then transduce the signal are relatively welldefined and include the Janus kinase (JAK) family of kinases and signal transducers and activators of transcription (STAT) transcription factors (2, 3), the proteins involved in limiting signal transduction are not well characterized.The four known members of the suppressor of cytokine signaling (SOCS) family (CIS, SOCS-1͞SSI-1͞JA B-1, SOCS-2, and SOCS-3, where CIS is cytokine-inducible SH2-containing protein) represent a family of negative regulators of cytokine signal transduction (4-9). The SOCS proteins appear to form part of a classical negative feedback loop that regulates cytokine signal transduction. Transcription of each of the SOCS genes occurs rapidly in vitro and in vivo in response to cytokines, and once produced, the various members of the SOCS family appear to inhibit signaling in different ways. For SOCS-1, inhibition of signal transduction appears to occur by binding to and inhibiting the catalytic activity of members of the JAK family of cytoplasmic kinases (4-6), while CIS appears to act by competing with signaling molecules such as the STATs for binding to phosphorylated receptor cytoplasmic domains (7, 9).The SOCS proteins share structural similarities. Each has an N-terminal region of variable length and highly variable amino acid sequence, a central SH2 domain, and a striking region of C-terminal homology that we designated the SOCS box (4). Given the sequence similarity evident in the SOCS box of the four SOCS proteins and its conserved position at the C terminus of each protein, ...
Suppressor of cytokine signalling-2 (SOCS-2) is a member of the suppressor of cytokine signalling family, a group of related proteins implicated in the negative regulation of cytokine action through inhibition of the Janus kinase (JAK) signal transducers and activators of transcription (STAT) signal-transduction pathway. Here we use mice unable to express SOCS-2 to examine its function in vivo. SOCS-2(-/-) mice grew significantly larger than their wild-type littermates. Increased body weight became evident after weaning and was associated with significantly increased long bone lengths and the proportionate enlargement of most organs. Characteristics of deregulated growth hormone and insulin-like growth factor-I (IGF-I) signalling, including decreased production of major urinary protein, increased local IGF-I production, and collagen accumulation in the dermis, were observed in SOCS-2-deficient mice, indicating that SOCS-2 may have an essential negative regulatory role in the growth hormone/IGF-I pathway.
SOCS-1 was originally identified as an inhibitor of interleukin-6 signal transduction and is a member of a family of proteins (SOCS-1 to SOCS-7 and CIS) that contain an SH2 domain and a conserved carboxyl-terminal SOCS box motif. Mutation studies have established that critical contributions from both the amino-terminal and SH2 domains are essential for SOCS-1 and SOCS-3 to inhibit cytokine signaling. Inhibition of cytokinedependent activation of STAT3 occurred in cells expressing either SOCS-1 or SOCS-3, but unlike SOCS-1, SOCS-3 did not directly interact with or inhibit the activity of JAK kinases. Although the conserved SOCS box motif appeared to be dispensable for SOCS-1 and SOCS-3 action when overexpressed, this domain interacts with elongin proteins and may be important in regulating protein turnover. In gene knockout studies, SOCS-1 -/-mice were born but failed to thrive and died within 3 weeks of age with fatty degeneration of the liver and hemopoietic infiltration of several organs. The thymus in SOCS-1 -/-mice was small, the animals were lymphopenic, and deficiencies in B lymphocytes were evident within hemopoietic organs. We propose that the absence of SOCS-1 in these mice prevents lymphocytes and liver cells from appropriately controlling signals from cytokines with cytotoxic side effects. J. Leukoc. Biol. 66: 588-592; 1999.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.