Behavior has molecular, cellular, and circuit determinants. However, because many proteins are broadly expressed, their acute manipulation within defined cells has been difficult. Here, we combined the speed and molecular specificity of pharmacology with the cell type specificity of genetic tools. DART (drugs acutely restricted by tethering) is a technique that rapidly localizes drugs to the surface of defined cells, without prior modification of the native target. We first developed an AMPAR antagonist DART, with validation in cultured neuronal assays, in slices of mouse dorsal striatum, and in behaving mice. In parkinsonian animals, motor deficits were causally attributed to AMPARs in indirect spiny projection neurons (iSPNs) and to excess phasic firing of tonically active interneurons (TANs). Together, iSPNs and TANs (i.e., D2 cells) drove akinesia, whereas movement execution deficits reflected the ratio of AMPARs in D2 versus D1 cells. Finally, we designed a muscarinic antagonist DART in one iteration, demonstrating applicability of the method to diverse targets.
SUMMARYCell-specific pharmaceutical technologies promise mechanistic insight into clinical drugs―those that treat, and often define, human disease. In particular,DART(drug acutely restricted by tethering) achieves genetically programmable control of drug concentration over cellular dimensions. The method is compatible with clinical pharmaceuticals and amenable to studies in behaving animals. Here, we describeDART.2, comprising three advances. First, we improve the efficiency of chemical capture, enabling cell-specific accumulation of drug to ∼3,000-times the ambient concentration in 15 min. Second, we develop tracer reagents, providing a behavior-independent measure of cellular target engagement in each animal. Third, we extend the method to positive allosteric modulators and outline design principles for this clinically significant class. We showcase the platform with four pharmaceuticals―two that weaken excitatory (AMPAR) or inhibitory (GABAAR) chemical neurotransmission, and two that strengthen these forms of synaptic communication. Across four labs, we tested reagents in the mouse cerebellum, basal ganglia, visual cortex, and retina. Collectively, we demonstrate robust, bidirectional editing of chemical neurotransmission. We provide for distribution of validated reagents, community design principles, and synthetic building blocks for application to diverse pharmaceuticals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.