While there is an effective vaccine for Human Hepatitis B Virus (HBV), 257 million people have chronic infections for which there is no cure. The assembly process for the viral capsid is a potential therapeutic target. In order to understand the capsid assembly process, we investigated the dimeric building blocks of the capsid. To understand what blocks assembly, we took advantage of an assembly incompetent mutant dimer, Cp149-Y132A, located in the interdimer interface. This mutation leads to changes in protein dynamics throughout the structure of the dimer as measured by hydrogen−deuterium exchange mass spectrometry (HDX-MS). To further understand how the HBV capsid assembles, the homologue woodchuck HBV (WHV) capsid protein dimer (Cp) was used. WHV is more stable than HBV in HDX-MS and native mass spectrometry experiments. Because the WHV Cp assembles more rapidly into viral capsids than HBV, it was suspected that an increase in stability of the intradimer interface and/or in the contact region leads to increased assembly rates. The differences in dynamics when comparing HBV and human Cp149-Y132A as well as the differences in dynamics when comparing the HBV and WHV Cps allowed us to map an allosteric network within the HBV dimer. Through a careful comparison of structure, stability, and dynamics using four different capsid protein dimers, we conclude that protein subunit dynamics regulate HBV capsid assembly.
Background About two out of three Ethiopians are at risk of malaria, a disease caused by the parasites Plasmodium falciparum and Plasmodium vivax. Anopheles stephensi, an invasive vector typically found in South Asia and the Middle East, was recently found to be distributed across eastern and central Ethiopia and is capable of transmitting both P. falciparum and P. vivax. The detection of this vector in the Horn of Africa (HOA) coupled with widespread insecticide resistance requires that new methods of vector control be investigated in order to control the spread of malaria. Wolbachia, a naturally occurring endosymbiotic bacterium of mosquitoes, has been identified as a potential vector control tool that can be explored for the control of malaria transmission. Wolbachia could be used to control the mosquito population through suppression or potentially decrease malaria transmission through population replacement. However, the presence of Wolbachia in wild An. stephensi in eastern Ethiopia is unknown. This study aimed to identify the presence and diversity of Wolbachia in An. stephensi across eastern Ethiopia. Methods DNA was extracted from An. stephensi collected from eastern Ethiopia in 2018 and screened for Wolbachia using a 16S targeted PCR assay, as well as multilocus strain typing (MLST) PCR assays. Haplotype and phylogenetic analysis of the sequenced 16S amplicons were conducted to compare with Wolbachia from countries across Africa and Asia. Results Twenty out of the 184 mosquitoes screened were positive for Wolbachia, with multiple haplotypes detected. In addition, phylogenetic analysis revealed two superclades, representing Wolbachia supergroups A and B (bootstrap values of 81 and 72, respectively) with no significant grouping of geographic location or species. A subclade with a bootstrap value of 89 separates the Ethiopian haplotype 2 from other sequences in that superclade. Conclusions These findings provide the first evidence of natural Wolbachia populations in wild An. stephensi in the HOA. They also identify the need for further research to confirm the endosymbiotic relationship between Wolbachia and An. stephensi and to investigate its utility for malaria control in the HOA. Graphical Abstract
Anopheles stephensi is a major vector of malaria in Asia and the Arabian Peninsula, and its recent invasion into Africa poses a significant threat to malaria control and elimination efforts on the continent. The mosquito is well-adapted to urban environments, and its presence in Africa could potentially lead to an increase in malaria transmission in cities. Most of the knowledge about An. stephensi ecology in Africa has been generated from studies conducted during the rainy season, when vectors are most abundant. Here, we provide evidence from the peak of the dry season in the city of Jigjiga, Ethiopia, and report the finding of An. stephensi immature stages infesting predominantly water reservoirs made to support construction operations (in construction sites or associated with brick manufacturing businesses). Political and economic changes in Ethiopia (and particularly the Somali Region) have fueled an unprecedented construction boom since 2018 that, in our opinion, has been instrumental in the establishment, persistence and propagation of An. stephensi via the year-round availability of perennial larval habitats associated with construction. We argue that larval source management during the dry season may provide a unique opportunity for focused control of An. stephensi in Jigjiga and similar areas.
Introduction: Arboviral diseases, such as dengue, chikungunya, yellow fever, and Zika, are caused by viruses that are transmitted to humans through mosquito bites. However, the status of arbovirus vectors in eastern Ethiopia is unknown. The aim of this study was to investigate distribution, breeding habitat, bionomics and phylogenetic relationship of Aedes aegypti mosquito species in Somali Regional State, Eastern Ethiopia. Methods Entomological surveys were conducted in four sites including Jigjiga, Degehabur, Kebridehar and Godey in 2018 (October to December) to study the distribution of Ae. aegypti and a follow up collection was made in 2020 (July-December). In addition, seasonality and bionomics of Ae. aegypti was conducted in 2021 (January-April) in Kebridehar town. Adult mosquitoes were collected from indoor and outdoor locations using CDC light traps (LTs), pyrethrum spray collection (PSCs), and aspirators. Larvae and pupae were also collected from a total of 169 water-holding containers using a dipper between October and November 2020 (rainy season) in Kebridehar town. The species identification of wild caught and reared adults was conducted using a taxonomic key. In addition, species identification using mitochondrial and nuclear genes maximum likelihood-based phylogenetic analysis was performed. Results In the 2018 collection, Ae. aegypti was found in all study sites (Jigjiga, Degahabour, Kebridehar and Godey). In the 2020–2021 collection, a total of 470 (Female = 341, Male = 129) wild caught adult Ae. aegypti mosquitoes were collected, mostly during the rainy season with the highest frequency in November (n = 177) while the lowest abundance was in the dry season (n = 14) for both February and March. The majority of Ae. aegypt were caught using PSC (n = 365) followed by CDC LT (n = 102) and least were collected by aspirator from an animal shelter (n = 3). Aedes aegypti larval density was highest in tires (0.97 larvae per dip) followed by cemented cisterns (0.73 larvae per dip) and the Relative Breeding Index (RBI) was 0.87 and Container Index (CI) was 0.56. Genetic analysis of ITS2 and COI revealed one and 18 haplotypes, respectively and phylogenetic analysis confirmed species identification. The 2022 collection revealed no Ae. aegpti, but two previously uncharacterized species to that region. Phylogenetic analysis of these two species revealed their identities as Ae. hirsutus and Culiseta longiareolata. Conclusion Data from our study indicate that, Ae. aegypti is present both during the wet and dry seasons due to the availability of breeding habitats, including water containers like cemented cisterns, tires, barrels, and plastic containers. This study emphasizes the necessity of establishing a national entomological surveillance program for Aedes in Somali region.
CRISPR RNA-guided detection and degradation of foreign DNA is a dynamic process. Viruses can interfere with this cellular defense by expressing small proteins called anti-CRISPRs. While structural models of anti-CRISPRs bound to their target complex provide static snapshots that inform mechanism, the dynamics and thermodynamics of these interactions are often overlooked. Here, we use hydrogen deuterium exchange-mass spectrometry (HDX-MS) and differential scanning fluorimetry (DSF) experiments to determine how anti-CRISPR binding impacts the conformational landscape of the type IF CRISPR RNA guided surveillance complex (Csy) upon binding of two different anti-CRISPR proteins (AcrIF9 and AcrIF2). The results demonstrate that AcrIF2 binding relies on enthalpic stabilization, whereas AcrIF9 uses an entropy driven reaction to bind the CRISPR RNA-guided surveillance complex. Collectively, this work reveals the thermodynamic basis and mechanistic versatility of anti-CRISPR-mediated immune suppression. More broadly, this work presents a striking example of how allosteric effectors are employed to regulate nucleoprotein complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.