The pancreatic ATP-sensitive potassium (K ATP ) channel, a complex of four sulfonylurea receptor 1 (SUR1) and four potassium channel Kir6.2 subunits, regulates insulin secretion by linking metabolic changes to -cell membrane potential. Sulfonylureas inhibit K ATP channel activities by binding to SUR1 and are widely used to treat type II diabetes. We report here that sulfonylureas also function as chemical chaperones to rescue K ATP channel trafficking defects caused by two SUR1 mutations, A116P and V187D, identified in patients with congenital hyperinsulinism. Sulfonylureas markedly increased cell surface expression of the A116P and V187D mutants by stabilizing the mutant SUR1 proteins and promoting their maturation. By contrast, diazoxide, a potassium channel opener that also binds SUR1, had no effect on surface expression of either mutant. Importantly, both mutant channels rescued to the cell surface have normal ATP, MgADP, and diazoxide sensitivities, demonstrating that SUR1 harboring either the A116P or the V187D mutation is capable of associating with Kir6.2 to form functional K ATP channels. Thus, sulfonylureas may be used to treat congenital hyperinsulinism caused by certain K ATP channel trafficking mutations.
ATP-sensitive potassium (K ATP )1 channels present in the plasma membrane of pancreatic -cells play a central role in mediating glucose-induced insulin secretion (1-4). The activity of K ATP channels, which regulates -cell membrane potential, is determined by the relative concentrations of intracellular ATP and ADP. When the blood glucose level rises, the increased intracellular [ATP/ADP] ratio favors K ATP channel closure, resulting in membrane depolarization, Ca 2ϩ influx, and insulin secretion. When the blood glucose level falls, the above molecular events reverse, and insulin release is stopped. In the event where K ATP channels fail to open during glucose starvation, -cell membrane potential remains depolarized, and insulin secretion persists, leading to severe hypoglycemia. These symptoms are found in patients suffering from congenital hyperinsulinism (5), also known as persistent hyperinsulinemia hypoglycemia of infancy (PHHI) (6). Indeed, mutations in the K ATP channel genes, sulfonylurea receptor 1 (SUR1) and the inward rectifier potassium channel Kir6.2, that lead to a loss of channel function have been shown to be major causes of PHHI (4, 6).The pancreatic K ATP channel complex consists of four poreforming Kir6.2 subunits and four regulatory SUR1 subunits (7-10). Gating of K ATP channels occurs as a result of the interplay between both channel subunits and intracellular ATP and ADP. Binding of ATP to the Kir6.2 subunit inhibits channel activity, whereas binding of Mg 2ϩ -complexed ATP or ADP to the SUR1 subunit stimulates channel activity (11)(12)(13)(14). SUR1 is a member of the ATP-binding cassette transporter family; it has three transmembrane domains: TM0, TM1, and TM2, and two large cytoplasmic nucleotide binding domains: NBD1 and NBD2 (15,16). Structure-function studies sugges...