In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Extracellular survival factors alter a cell's susceptibility to apoptosis, often through posttranslational mechanisms. However, no consistent relationship has been established between such survival signals and the BCL-2 family, where the balance of death agonists versus antagonists determines susceptibility. One distant member, BAD, heterodimerizes with BCL-X(L) or BCL-2, neutralizing their protective effect and promoting cell death. In the presence of survival factor IL-3, cells phosphorylated BAD on two serine residues embedded in 14-3-3 consensus binding sites. Only the nonphosphorylated BAD heterodimerized with BCL-X(L) at membrane sites to promote cell death. Phosphorylated BAD was sequestered in the cytosol bound to 14-3-3. Substitution of serine phosphorylation sites further enhanced BAD's death-promoting activity. The rapid phosphorylation of BAD following IL-3 connects a proximal survival signal with the BCL-2 family, modulating this checkpoint for apoptosis.
To extend the mammalian cell death pathway, we screened for further Bcl-2 interacting proteins. Both yeast two-hybrid screening and lambda expression cloning identified a novel interacting protein, Bad, whose homology to Bcl-2 is limited to the BH1 and BH2 domains. Bad selectively dimerized with Bcl-xL as well as Bcl-2, but not with Bax, Bcl-xs, Mcl-1, A1, or itself. Bad binds more strongly to Bcl-xL than Bcl-2 in mammalian cells, and it reversed the death repressor activity of Bcl-xL, but not that of Bcl-2. When Bad dimerized with Bcl-xL, Bax was displaced and apoptosis was restored. When approximately half of Bax was heterodimerized, death was inhibited. The susceptibility of a cell to a death signal is determined by these competing dimerizations in which levels of Bad influence the effectiveness of Bcl-2 versus Bcl-xL in repressing death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.