Usual interstitial pneumonia (UIP) is a specific histopathologic pattern of interstitial lung fibrosis that may be idiopathic or secondary to autoimmune diseases and environmental exposures. In this study, we compared gene expression patterns in primary fibroblasts isolated from lung tissues with UIP histology and fibroblasts isolated from lung tissues with normal histology using expression microarrays. We found that WNT5A was significantly increased in fibroblasts obtained from UIP lung tissues compared with normal lung fibroblasts, an observation verified by quantitative real-time RT-PCR and Western blot. Because the role of WNT5A in UIP is unknown, we treated normal lung fibroblasts or UIP lung fibroblasts with WNT5A, and found that WNT5A increased proliferation as well as relative resistance to H 2 O 2 -induced apoptosis. This effect was not mediated through the canonical WNT/b-catenin pathway, as WNT5A induced a decrease in b-catenin levels in the same cells. In addition, WNT5A induced increases in fibronectin and a 5 -integrin in normal lung fibroblasts. Collectively, our data suggest that WNT5A may play a role in fibroblast expansion and survival characteristics of idiopathic pulmonary fibrosis and other fibrotic interstitial lung diseases that exhibit UIP histological patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.