BACKGROUND
Cannabinoid receptor 2 (CB2) agonists have recently gained attention as potential therapeutic targets in the management of neuropathic pain. In this study, we characterized the pharmacological profile of the novel compound N′-[(3Z)-1-(1-hexyl)-2-oxo-1,2-dihydro-3H-indol-3-ylidene]benzohydrazide (MDA19), a CB2 agonist.
METHODS
We used radioligand binding assays and multiple in vitro functional assays at human and rat CB1 and CB2 receptors. The effects of MDA19 in reversing neuropathic pain were assessed in various neuropathic pain models in rats and in CB2+/+ and CB2−/− mice.
RESULTS
MDA19 displayed 4-fold-higher affinity at the human CB2 than at the human CB1 receptor (Ki = 43.3 ± 10.3 vs 162.4 ± 7.6 nM) and nearly 70-fold-higher affinity at the rat CB2 than at the rat CB1 receptor (Ki = 16.3 ± 2.1 vs 1130 ± 574 nM). In guanosine triphosphate (GTP)γ[35S] functional assays, MDA19 behaved as an agonist at the human CB1 and CB2 receptors and at the rat CB1 receptor but as an inverse agonist at the rat CB2 receptor. In 3′,5′-cyclic adenosine monophosphate (cAMP) assays, MDA19 behaved as an agonist at the rat CB1 receptor and exhibited no functional activity at the rat CB2 receptor. In extracellular signal-regulated kinases 1 and 2 activation assays, MDA19 behaved as an agonist at the rat CB2 receptor. MDA19 attenuated tactile allodynia produced by spinal nerve ligation or paclitaxel in a dose-related manner in rats and CB2+/+ mice but not in CB2−/− mice, indicating that CB2 receptors mediated the effects of MDA19. MDA19 did not affect rat locomotor activity.
CONCLUSIONS
We found that MDA19 exhibited a distinctive in vitro functional profile at rat CB2 receptors and behaved as a CB1/CB2 agonist in vivo, characteristics of a protean agonist. MDA19 has potential for alleviating neuropathic pain without producing adverse effects in the central nervous system.
An average serum sodium level of less than 130 mEq/L during cardiopulmonary bypass is independently associated with an increased risk of postoperative stroke in patients who undergo primary coronary artery bypass grafting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.