For the last one decade, research in self-regulated learning (SRL) and educational psychology has proliferated. Researchers and educators have focused on how to support leaners grow their SRL skills on both face-to-face and e-learning environments. In addition, recent studies and meta-analysis have greatly contributed to the domain knowledge on the use of SRL strategies and how they contribute and boost academic performance for learners. However, there is little systematic review on the literature on the techniques and tools used to measure SRL on e-learning platforms. This review sought to outline recent advances and the trends in this area to make it more efficient for researchers to establish the empirical studies and research patterns among different studies in the field of SRL. The findings from this study are concurrent with existing empirical evidence that traditional methods designed for classroom supports are being used for measuring SRL on e-learning environments. Few studies have used learner analytics and educational data mining (EDM) techniques to measure and promote SRL strategies for learners. The paper finally points out the existing gaps with the tools presently used to measure and support SRL on learning management systems and recommends further studies on the areas of EDM which can support SRL.
Abstract-The current Learning Management Systems used in e-learning lack intelligent mechanisms which can be used by an instructor to group learners during an online group task based on the learners" collaboration competence level. In this paper, we discuss a novel approach for grouping students in an online learning group task based on individual learners" collaboration competence level. We demonstrate how it can be applied in a Learning Management System such as Moodle using forum data. To create the collaboration competence levels, two machine learning algorithms for clustering namely Skmeans and Expectation Maximization (EM) were applied to cluster data and generate clusters based on learner"s collaboration competence. We develop an intelligent grouping algorithm which utilizes these machine learning generated clusters to form heterogeneous groups. These groups are automatically made available to the instructor who can proceed to assign them to group tasks. This approach has the advantage of dynamically changing the group membership based on learners" collaboration competence level.
Abstract-Intelligent agents have been used in collaborative learning. However, they are rarely used to facilitate group interactions in collaborative m-learning environments. In view of this, the paper discusses the use of intelligent agents in facilitating collaborative learning in mobile learning environments. The paper demonstrates how to design intelligent agents and integrate them in collaborative mobile learning environments to allow group learners to improve their levels of group knowledge construction. The design was implemented in a collaborative mobile learning system running on Modular Object-Oriented Dynamic Learning Environment (Moodle) platform. The application was used in some experiments to investigate the effects of those facilitated interactions on the level of group knowledge construction. The results showed improved levels of group knowledge construction in instances where the facilitations were enabled compared to where they were disabled. The paper concludes that the use of intelligent agents in facilitating learner group interactions in collaborative mobile learning environments improves the levels of group knowledge construction. For future work, the use of intelligent agents can be tested in other areas of group interactions to enhance group learning.
With the increased emphasis on the benefits of self-regulated learning (SRL), it is important to make use of the huge amounts of educational data generated from online learning environments to identify the appropriate educational data mining (EDM) techniques that can help explore and understand online learners’ behavioral patterns. Understanding learner behaviors helps us gain more insights into the right types of interventions that can be offered to online learners who currently receive limited support from instructors as compared to their counterparts in traditional face-to-face classrooms. In view of this, our study first identified an optimal EDM algorithm by empirically evaluating the potential of three clustering algorithms (expectation-maximization, agglomerative hierarchical, and k-means) to identify SRL profiles using trace data collected from the Open University of the UK. Results revealed that agglomerative hierarchical was the optimal algorithm, with four clusters. From the four clusters, four SRL profiles were identified: poor self-regulators, intermediate self-regulators, good self-regulators, and exemplary self-regulators. Second, through correlation analysis, our study established that there is a significant relationship between the SRL profiles and students’ final results. Based on our findings, we recommend agglomerative hierarchical as the optimal algorithm to identify SRL profiles in online learning environments. Furthermore, these profiles could provide insights on how to design a learning management system which could promote SRL, based on learner behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.