The present paper provides an extended analysis of a microgrid energy management framework based on Robust Optimization (RO). Uncertainties in wind power generation and energy consumption are described in the form of Prediction Intervals (PIs), estimated by a Genetic Algorithm (GA)-trained Neural Network (NN). The framework is tested and exemplified in a microgrid formed by a middle-size train station (TS) with integrated photovoltaic power production system (PV), an urban wind power plant (WPP) and a surrounding residential district (D). The system is described by Agent-Based Modelling (ABM): each stakeholder is modelled as an individual agent, which aims at a specific goal, either of decreasing its expenses from power purchasing or increasing its revenues from power selling. The aim of this paper is to identify which is the uncertainty level associated to the "extreme" conditions upon which robust management decisions perform better than a microgrid management based on expected values. This work shows how the probability of occurrence of some specific uncertain events, e.g., failures of electrical lines and electricity demand and price peaks, highly conditions the reliability and performance indicators of the microgrid under the two optimization approaches: (i) RO based on the PIs of the uncertain parameters and (ii) optimization based on expected values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.