The COVID-19 pandemic has revealed the importance of virus genome sequencing to guide public health interventions to control virus transmission and understand SARS-CoV-2 evolution. As of July 20th, 2021, >2 million SARS-CoV-2 genomes have been submitted to GISAID, 94% from high income and 6% from low and middle income countries. Here, we analyse the spatial and temporal heterogeneity in SARS-CoV-2 global genomic surveillance efforts. We report a comprehensive analysis of virus lineage diversity and genomic surveillance strategies adopted globally, and investigate their impact on the detection of known SARS-CoV-2 virus lineages and variants of concern. Our study provides a perspective on the global disparities surrounding SARS-CoV-2 genomic surveillance, their causes and consequences, and possible solutions to maximize the impact of pathogen genome sequencing for efforts on public health.
Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity.
No abstract
Drug induced liver injury (DILI) can require significant risk management in drug development and on occasion can cause morbidity or mortality, leading to drug attrition. Optimizing candidates preclinically can minimize hepatotoxicity risk, but it is difficult to predict due to multiple etiologies encompassing DILI, often with multifactorial and overlapping mechanisms. In addition to epidemiological risk factors, physicochemical properties, dose, disposition, lipophilicity, and hepatic metabolic function are also relevant for DILI risk. Better human-relevant, predictive models are required to improve hepatotoxicity risk assessment in drug discovery. Our hypothesis is that integrating mechanistically relevant hepatic safety assays with Bayesian machine learning will improve hepatic safety risk prediction. We present a quantitative and mechanistic risk assessment for candidate nomination using data from in vitro assays (hepatic spheroids, BSEP, mitochondrial toxicity, and bioactivation), together with physicochemical (cLogP) and exposure (Cmax total ) variables from a chemically diverse compound set (33 no/ low-, 40 medium-, and 23 high-severity DILI compounds). The Bayesian model predicts the continuous underlying DILI severity and uses a data-driven prior distribution over the parameters to prevent overfitting. The model quantifies the probability that a compound falls into either no/low-, medium-, or high-severity categories, with a balanced accuracy of 63% on held-out samples, and a continuous prediction of DILI severity along with uncertainty in the prediction. For a binary yes/no DILI prediction, the model has a balanced accuracy of 86%, a sensitivity of 87%, a specificity of 85%, a positive predictive value of 92%, and a negative predictive value of 78%. Combining physiologically relevant assays, improved alignment with FDA recommendations, and optimal statistical integration of assay data leads to improved DILI risk prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.