It is shown that, in spite of the wave radiation into the adjacent liquid, a large group of Lamb waves are able to propagate along piezoelectric plates (quartz, LiNbO3, LiTaO3) coated with a liquid layer (distilled water H2O). When the layer freezes, most of the group’s waves increase their losses, essentially forming an acoustic response towards water-to-ice transformation. Partial contributions to the responses originating from wave propagation, electro-mechanical transduction, and wave scattering were estimated and compared with the coupling constants, and the vertical displacements of the waves were calculated numerically at the water–plate and ice–plate interfaces. The maximum values of the responses (20–30 dB at 10–100 MHz) are attributed to the total water-to-ice transformation. Time variations in the responses at intermediate temperatures were interpreted in terms of a two-phase system containing both water and ice simultaneously. The results of the paper may turn out to be useful for some applications where the control of ice formation is an important problem (aircraft wings, ship bodies, car roads, etc.).
Using acoustic wave modes propagation in piezoelectric plates loaded with conductive liquids, peculiarities of the mode-liquid acoustoelectric interaction are studied. It is found that (i) in contrast to bulk and surface acoustic waves propagating in piezoelectric semiconductors, the acoustoelectric attenuation of the modes is not symmetric in respect to its maximum, (ii) a large increase in attenuation may be accompanied by a small decrease in phase velocity and vice versa, (iii) the peculiarities are valid for “pure” (without beam steering) and “not pure” (with beam steering) modes, as well as for modes of different orders and polarizations, and (iv) conductivity of test liquid increases electromagnetic leakage between input and output transducers, affecting results of the measurements. To decrease the leakage, the liquid should be localized between transducers, outside the zone over them. If so, the mode sensitivity may be as large as 8.6 dB/(S/m) for amplitude and 107°/(S/m) for phase. However, because of comparable cross-sensitivity towards viscosity and dielectric permittivity, modes with selective detection of liquid conductivity are not found.
Using plates of weak piezoeletcric crystal (quartz) loaded with various liquids, it is shown that along with common modes, whose sensitivity towards different liquid parameters comparable with each other, there are some uncommon modes, whose amplitude responses towards viscosity η are much larger than towards temperature T and electric conductivity σ. The search of the modes with the selective properties is accomplished by varying plate thickness h, crystal orientation, wave length λ, and mode order n. It is found that all modes possessing the property are characterized by small surface-normal displacement, avoiding wave radiation into adjacent liquid, large in-plane displacements, enhancing viscous coupling the modes and liquids, and small electro-mechanical constant, reducing electro-acoustic interaction. Basing on the modes, the sensor prototypes with selective operation are developed and tested for η from 1 to 1500 cP, σ from 0 to 1.2 S/m, and t from 0 to 55 °C. Because of operation at ultrasonic frequency (tens MHz) the prototypes have different sensitivities in various η-ranges: 0.3 dB/cP for 1–20 cP, 0.12 dB/cP for 20–100 cP, and 0.015 dB/cP for 100–1500 cP. Viscosity responses of the prototypes become comparable with their electric outputs only for η < 2 cP. Temperature responses are almost zero in air, but when plate is coated with liquid they increase depending on liquid properties, allowing measurements of the temperature dependence of the liquid viscosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.