Although some studies have investigated the clinicopathologic relationships between papillary thyroid carcinoma (PTC) and Hashimoto's thyroiditis (HT), there is still no clear understanding of differences in tumor immune microenvironment for PTC with coexisting HT and HT effect on PTC progression. The aim of this study was to clarify immune-mediated mechanisms of coexisting HT, which might influence PTC progression. 30 patients with histologically confirmed conventional-type PTC and 30 patients with PTC and coexisting HT were enrolled in the study. To analyze the role of immune-mediated links between PTC and HT, immunohistochemical investigation was conducted to count the number of different immune cells including T-cytotoxic cells (CD8), plasma cells (CD138), Treg cells (FOXP3), mast cells (MCT), and M2 macrophages (CD163). It was shown that despite the high number of immune cells in the intact thyroid tissues of PTC patients with coexisting HT there were no significant differences in M2 macrophages, mast cells and Treg counts inside PTC with or without HT. PTC with HT was associated with a higher number of CD8þ cells (P < 0.001) reflecting the ability of immune system to generate and recruit T-cytotoxic cells in tumor area, which can explain the protective effect of HT on PTC progression. Lymph node metastases development was associated with an increased number of mast cells, M2 macrophages and Treg along with a decreased plasma cells count regardless of coexisting HT. However, we did not find significant differences in T-cytotoxic cells quantity in node-positive and node-negative patients with or without HT, which encourages further investigation of immune escape mechanisms in PTC.
Dichlorodiphenyltrichloroethane (DDT) is the most widespread, persistent pollutant and endocrine disruptor on the planet. Although DDT has been found to block androgen receptors, the effects of its low-dose exposure in different periods of ontogeny on the male reproductive system remain unclear. We evaluate sex steroid hormone production in the pubertal period and after maturation in male Wistar rats exposed to low doses of o,p’-DDT, either during prenatal and postnatal development or postnatal development alone. Prenatally and postnatally exposed rats exhibit lower testosterone production and increased estradiol and estriol serum levels after maturation, associated with the delayed growth of gonads. Postnatally exposed rats demonstrate accelerated growth of gonads and higher testosterone production in the pubertal period. In contrast to the previous group, they do not present raised estradiol production. All of the exposed animals exhibit a reduced conversion of progesterone to 17OH-progesterone after sexual maturation, which indicates putative attenuation of sex steroid production. Thus, the study reveals age-dependent outcomes of low-dose exposure to DDT. Prenatal onset of exposure results in the later onset of androgen production and the enhanced conversion of androgens to estrogens after puberty, while postnatal exposure induces the earlier onset of androgen secretion.
Epinephrine is the most abundant catecholamine hormone, produced by the nervous system and adrenal glands. Endocrine disruption of epinephrine synthesis, secretion and signaling is less studied than steroid and thyroid hormones. Dichlorodiphenyltrichloroethane (DDT) is recognized as one of the most prominent environmental contaminants with a long half-life. It is a potent endocrine disrupter affecting sex steroid, mineralocorticoid, glucocorticoid and thyroid hormone production. Exposure to low doses of DDT is universal and begins in utero. Therefore, we studied adrenal medulla growth and function in male Wistar rats exposed to low doses of DDT during prenatal and postnatal development until puberty and adulthood, as well as rats exposed to DDT since the first day of postnatal development. All the exposed rats demonstrated lowered epinephrine blood levels, gradually reducing with age. DDT was found to inhibit the synthesis of tyrosine hydroxylase and affect the mitochondrial apparatus of epinephrine-producing cells during puberty and even after maturation. Low-dose exposure to DDT from birth resulted in more pronounced changes in adrenomedullary cells and a more profound decrease (up to 50%) in epinephrine secretion in adult rats. Prenatal onset of exposure demonstrated a mild effect on epinephrine-producing function (30% reduction), but was associated with lower rate of adrenal medulla growth during maturation and 25% smaller adrenal medullar size in adult rats. All subjects exposed to low doses of DDT failed to develop adaptive changes and restore proper epinephrine production. These results indicate a dysmorphogenetic effect of prenatal exposure and disruption of secretory function of adrenal chromaffin cells by postnatal exposure to DDT.
The aim of the research was to study formation of thymic lymphocytes proliferative response to T cell mitogen Concanavalin A in 7, 42, and 70 days-old male Wistar rats developmentally exposed to low doses of endocrine disruptor dichlorodiphenyltrichloroethane (2.90 AE 0.13 μg/kg body weight). The thymus of the exposed rats did not show morphological abnormalities. Exposure to the endocrine disrupter was found to alter age-dependent changes of thymic lymphocyte proliferative activity and attenuate proliferative response to Concanavalin A in puberty and adulthood. Insufficient response to mitogen was mediated by higher content of actively proliferating Ki-67-positive lymphoblasts compared to the control values. Insufficient proliferative response to mitogen in developmentally exposed to the endocrine disruptor rats may provide higher risk of impaired cellular immune reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.