tmRNA and SmpB are the main participants of trans-translation, a process which rescues the ribosome blocked during translation of non-stop mRNA. While a one-to-one stoichiometry of tmRNA to the ribosome is generally accepted, the number of SmpB molecules in the complex is still under question. We have isolated tmRNA-ribosome complexes blocked at different steps of the tmRNA path through the ribosome and analyzed the stoichiometry of the complexes. Ribosome, tmRNA and SmpB were found in equimolar amount in the tmRNA-ribosome complexes stopped at the position of the 2nd, 4th, 5th or the 11th codons of the coding part of the tmRNA.
Trans-translation is a process which switches the synthesis of a polypeptide chain encoded by a nonstop messenger RNA to the mRNA-like domain of a transfer-messenger RNA (tmRNA). It is used in bacterial cells for rescuing the ribosomes arrested during translation of damaged mRNA and directing this mRNA and the product polypeptide for degradation. The molecular basis of this process is not well understood. Earlier, we developed an approach that allowed isolation of tmRNA-ribosomal complexes arrested at a desired step of tmRNA passage through the ribosome. We have here exploited it to examine the tmRNA structure using chemical probing and cryo-electron microscopy tomography. Computer modeling has been used to develop a model for spatial organization of the tmRNA inside the ribosome at different stages of trans-translation.
Summarytrans-Translation is a process which the bacterial cells apply to rescue the ribosomes that are arrested during the translation of damaged mRNA and to get rid of the mRNA and the product polypeptide. In the course of trans-translation, the mRNAlike domain of tmRNA replaces the nonstop messenger RNA bound to the ribosome. Although several structural elements of tmRNA and SmpB known to be essential for correct determination of resume codon, the molecular mechanism of trans-translation is not well understood. Computer modeling has been used to develop a model for the spatial organization of the tmRNA inside the ribosome at different stages of trans-translation leading to a proposal for the mechanism of the templateswitching process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.