Search trees with relaxed balance were introduced with the aim of facilitating fast updating on shared-memory asynchronous parallel architectures. To obtain this, rebalancing has been uncoupled from the updating, so extensive locking in connection with updates is avoided. Rebalancing is taken care of by background processes, which do only a constant amount of work at a time before they release locks. Thus, the rebalancing and the associated locks are very localized in time as well as in space. In particular, there is no exclusive locking of whole paths. This means that the amount of parallelism possible is not limited by the height of the tree.Search trees with relaxed balance have been obtained by adapting standard sequential search trees to this new paradigm; clearly using similar techniques in each case, but no general result has been obtained. We show how any search tree with local bottom-up rebalancing can be used in a relaxed variant, preserving the complexity of the rebalancing from the sequential case. Additionally, we single out the one high level locking mechanism that a parallel implementation must provide in order to guarantee consistency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.