Missing aspects of the heritability of chronic neuropathic pain, as a complex adult-onset trait, may be hidden within rare variants with low effect on disease risk, unlikely to be resolved by a single-variant approach. To identify new risk genes, we performed a next-generation sequencing of 107 pain genes and collapsed the rare variants through gene-wise aggregation analysis. The optimal unified sequence kernel association test was applied to 169 patients with painful neuropathy, 223 patients with nociplastic pain (82 diagnosed with chronic widespread pain and 141 with fibromyalgia), and 216 healthy controls. Frequency and features of variants in TRPA1, which was the most significant gene, were further validated in 2 independent cohorts of 140 patients with chronic pain (90 with painful neuropathy and 50 with chronic widespread pain) and 34 with painless neuropathy. The effect of aminoacidic changes were modeled in silico according to physicochemical characteristics. TRPA1 was significantly enriched of rare variants which significantly discriminated chronic pain patients from healthy controls after Bonferroni correction (P = 6.7 × 10−4, ρ = 1), giving a risk of 4.8-fold higher based on the simple burden test (P = 0.0015, OR = 4.8). Among the 32 patients harboring TRPA1 variants, 24 (75%) were diagnosed with nociplastic pain, either fibromyalgia (12; 37.5%) or chronic widespread pain (12; 37.5%), whereas 8 (25%) with painful neuropathy. Irrespective of the clinical diagnosis, 12 patients (38%) complained of itch and 10 (31.3%) of cold-induced or cold-accentuated pain, mostly episodic. Our study widens the spectrum of channelopathy-related chronic pain disorders and contributes to bridging the gap between phenotype and targeted therapies based on patients' molecular profile.
Semantic and right temporal variant of frontotemporal dementia (svFTD and rtvFTD) are rare clinical phenotypes in which, in most cases, the underlying pathology is TDP-43 proteinopathy. They are usually sporadic disorders, but recent evidences suggest a higher frequency of genetic mutations for the right temporal versus the semantic variant. However, the genetic basis of these forms is not clear. In this study we performed a genetic screening of a single-center cohort of svFTD and rtvFTD patients, aiming at identifying the associated genetic variants. A panel of 73 dementia candidate genes has been analyzed by NGS target sequencing including both causal and risk/modifier genes in 23 patients (15 svFTD and 8 rtvFTD) and 73 healthy age-matched controls. We first performed a single variant analysis considering rare variants and then a gene-based aggregation analysis to evaluate the cumulative effects of multiple rare variants in a single gene. We found 12 variants in nearly 40% of patients (9/23), described as pathogenic or classified as VUS/likely pathogenic. The overall rate was higher in svFTD than in rtvFTD. Three mutations were located in MAPT gene and single mutations in the following genes: SQSTM1, VCP, PSEN1, TBK1, OPTN, CHCHD10, PRKN, DCTN1. Our study revealed the presence of variants in genes involved in pathways relevant for the pathology, especially autophagy and inflammation. We suggest that molecular analysis should be performed in all svFTD and rtvFTD patients, to better understand the genotype–phenotype correlation and the pathogenetic mechanisms that could drive the clinical phenotypes in FTD.
Personalised management of neuropathic pain is an unmet clinical need due to heterogeneity of the underlying aetiologies, incompletely understood pathophysiological mechanisms, and limited efficacy of existing treatments. Recent studies on microRNA in pain preclinical models have begun to yield insights into pain-related mechanisms, identifying nociception-related species differences and pinpointing potential drug candidates. With the aim of bridging the translational gap towards the clinic, we generated a human pain-related integrative miRNA and mRNA molecular profile of the epidermis, the tissue hosting small nerve fibres, in a deeply phenotyped cohort of patients with sodium channel-related painful neuropathy not responding to currently available therapies. We identified four miRNAs strongly discriminating patients from healthy individuals, confirming their effect on differentially expressed gene-targets driving peripheral sensory transduction, transmission, modulation, and post-transcriptional modifications, with strong effects on gene targets including NEDD4. We identified a complex epidermal miRNA-mRNA network based on tissue-specific experimental data suggesting a cross-talk between epidermal cells and axons in neuropathy pain. Using immunofluorescence assay and confocal microscopy, we observed that Nav1.7 signal intensity in keratinocytes strongly inversely correlated with NEDD4 expression that was downregulated by miR-30 family, suggesting post-transcriptional fine tuning of pain-related protein expression. Our targeted molecular profiling advances the understanding of specific neuropathic pain fine signatures and may accelerate process towards personalised medicine in patients with neuropathic pain.
Genetic frontotemporal lobar degeneration (FTLD) is characterized by heterogeneous phenotypic expression, with a disease onset highly variable even in patients carrying the same mutation. Herein we investigated if variants in lysosomal genes modulate the age of onset both in FTLD due to GRN null mutations and C9orf72 expansion. In a total of 127 subjects (n = 74 GRN mutations and n = 53 C9orf72 expansion carriers), we performed targeted sequencing of the top 98 genes belonging to the lysosomal pathway, selected based on their high expression in multiple brain regions. We described an earlier disease onset in GRN/C9orf72 pedigrees in subjects carrying the p.Asn521Thr variant (rs1043424) in PTEN-induced kinase 1 (PINK1), a gene that is already known to be involved in neurodegenerative diseases. We found that: (i) the PINK1 rs1043424 C allele is significantly associated with the age of onset; (ii) every risk C allele increases hazard by 2.11%; (iii) the estimated median age of onset in homozygous risk allele carriers is 10–12 years earlier than heterozygous/wild type homozygous subjects. A replication study in GRN/C9orf72 negative FTLD patients confirmed that the rs1043424 C allele was associated with earlier disease onset (−5.5 years in CC versus A carriers). Understanding the potential mechanisms behind the observed modulating effect of the PINK1 gene in FTLD might prove critical for identifying biomarkers and/or designing drugs to modify the age of onset, especially in GRN/C9orf72-driven disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.