BackgroundFor most rural households in sub-Saharan Africa, healthy livestock play a key role in averting the burden associated with zoonotic diseases, and in meeting household nutritional and socio-economic needs. However, there is limited understanding of the complex nutritional, socio-economic, and zoonotic pathways that link livestock health to human health and welfare. Here we describe a platform for integrated human health, animal health and economic welfare analysis designed to address this challenge. We provide baseline epidemiological data on disease syndromes in humans and the animals they keep, and provide examples of relationships between human health, animal health and household socio-economic status.MethodWe designed a study to obtain syndromic disease data in animals along with economic and behavioral information for 1500 rural households in Western Kenya already participating in a human syndromic disease surveillance study. Data collection started in February 2013, and each household is visited bi-weekly and data on four human syndromes (fever, jaundice, diarrhea and respiratory illness) and nine animal syndromes (death, respiratory, reproductive, musculoskeletal, nervous, urogenital, digestive, udder disorders, and skin disorders in cattle, sheep, goats and chickens) are collected. Additionally, data from a comprehensive socio-economic survey is collected every 3 months in each of the study households.FindingsData from the first year of study showed 93% of the households owned at least one form of livestock (55%, 19%, 41% and 88% own cattle, sheep, goats and chickens respectively). Digestive disorders, mainly diarrhea episodes, were the most common syndromes observed in cattle, goats and sheep, accounting for 56% of all livestock syndromes, followed by respiratory illnesses (18%). In humans, respiratory illnesses accounted for 54% of all illnesses reported, followed by acute febrile illnesses (40%) and diarrhea illnesses (5%). While controlling for household size, the incidence of human illness increased 1.31-fold for every 10 cases of animal illness or death observed (95% CI 1.16–1.49). Access and utilization of animal source foods such as milk and eggs were positively associated with the number of cattle and chickens owned by the household. Additionally, health care seeking was correlated with household incomes and wealth, which were in turn correlated with livestock herd size.ConclusionThis study platform provides a unique longitudinal dataset that allows for the determination and quantification of linkages between human and animal health, including the impact of healthy animals on human disease averted, malnutrition, household educational attainment, and income levels.
More than 75% of emerging infectious diseases are zoonotic in origin and a transdisciplinary, multi-sectoral One Health approach is a key strategy for their effective prevention and control. In 2004, US Centers for Disease Control and Prevention office in Kenya (CDC Kenya) established the Global Disease Detection Division of which one core component was to support, with other partners, the One Health approach to public health science. After catalytic events such as the global expansion of highly pathogenic H5N1 and the 2006 East African multi-country outbreaks of Rift Valley Fever, CDC Kenya supported key Kenya government institutions including the Ministry of Health and the Ministry of Agriculture, Livestock, and Fisheries to establish a framework for multi-sectoral collaboration at national and county level and a coordination office referred to as the Zoonotic Disease Unit (ZDU). The ZDU has provided Kenya with an institutional framework to highlight the public health importance of endemic and epidemic zoonoses including RVF, rabies, brucellosis, Middle East Respiratory Syndrome Coronavirus, anthrax and other emerging issues such as anti-microbial resistance through capacity building programs, surveillance, workforce development, research, coordinated investigation and outbreak response. This has led to improved outbreak response, and generated data (including discovery of new pathogens) that has informed disease control programs to reduce burden of and enhance preparedness for endemic and epidemic zoonotic diseases, thereby enhancing global health security. Since 2014, the Global Health Security Agenda implemented through CDC Kenya and other partners in the country has provided additional impetus to maintain this effort and Kenya’s achievement now serves as a model for other countries in the region. Significant gaps remain in implementation of the One Health approach at subnational administrative levels; there are sustainability concerns, competing priorities and funding deficiencies.
In this cohort of young children in western Kenya, we did not find an association between ownership of livestock and child growth status. However, disease episodes in household livestock may be related to a lower child growth rate in some groups.
The gut microbiome community structure and development are associated with several health outcomes in young children. To determine the household influences of gut microbiome structure, we assessed microbial sharing within households in western Kenya by sequencing 16S rRNA libraries of fecal samples from children and cattle, cloacal swabs from chickens, and swabs of household surfaces. Among the 156 households studied, children within the same household significantly shared their gut microbiome with each other, although we did not find significant sharing of gut microbiome across host species or household surfaces. Higher gut microbiome diversity among children was associated with lower wealth status and involvement in livestock feeding chores. Although more research is necessary to identify further drivers of microbiota development, these results suggest that the household should be considered as a unit. Livestock activities, health and microbiome perturbations among an individual child may have implications for other children in the household.
Improving the speed of outbreak detection and reporting at the community level are critical in managing the threat of emerging infectious diseases, many of which are zoonotic. The widespread use of mobile phones, including in rural areas, constitutes a potentially effective tool for real-time surveillance of infectious diseases. Using longitudinal data from a disease surveillance system implemented in 1500 households in rural Kenya, we test the effectiveness of mobile phone animal syndromic surveillance by comparing it with routine household animal health surveys, determine the individual and household correlates of its use and examine the broader implications for surveillance of zoonotic diseases. A total of 20 340 animal and death events were reported from the community through the two surveillance systems, half of which were confirmed as valid disease events. The probability of an event being valid was 2.1 times greater for the phone-based system, compared with the household visits. Illness events were 15 times (95% CI 12.8, 17.1) more likely to be reported through the phone system compared to routine household visits, but not death events (OR 0.1 (95% CI 0.09, 0.11)). Disease syndromes with severe presentations were more likely to be reported through the phone system. While controlling for herd and flock sizes owned, phone ownership was not a determinant of using the phone-based surveillance system, but the lack of a formal education, and having additional sources of income besides farming were associated with decreased likelihood of reporting through the phone system. Our study suggests that a phone-based surveillance system will be effective at detecting outbreaks of diseases such as Rift Valley fever that present with severe clinical signs in animal populations, but in the absence of additional reporting incentives, it may miss early outbreaks of diseases such as avian influenza that present primarily with mortality. This article is part of the theme issue ‘Dynamic and integrative approaches to understanding pathogen spillover’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.